Answer:
The increase in thermal energy results in an increase in pressure.
Explanation:
- The increase in entropy is directly related to the increase in temperature. So the thermal energy in heat engine increases the temperature of that surrounding.
- Higher temperature means the kinetic energy of particles is also higher, their vibration is increasing. So it increases the pressure (ideal gas law).
- In this way the increment in the thermal energy in heat engine moves piston by increasing the pressure.
Answer:
The announcement he had made promised to overturn our understanding of the Universe. If the data gathered by 160 scientists working on the project were correct, the unthinkable had been observed. Particles – in this case, neutrinos – had travelled faster than light.
Explanation: Plz Mark brainleist
Answer:
a) When the sides of the joint are close together, the particles have more kinetic energy than they do when sides are farther apart.
Explanation:
Answer:
16 J
Explanation:
It is given that,
Work done, W = 2 J
A spring is stretched by 2.0 cm from its equilibrium length
We need to find how much more work will be required to stretch it an additional 4.0 cm.
Let k is the spring constant of the spring. When W = 2J, and x = 2 cm, then energy required to stretch the spring is :

The energy required to stretch the spring from 2 cm to additional 4 cm i.e. 2+4= 6 cm.

So, the required work done is 16 J.
Answer:
26.466cm³/min
Explanation:
Given:
Volume 'V'= 320cm³
P= 95kPa
dP/dt = -11 kPa/minute
pressure P and volume V are related by the equation
P
=C
we need to find dV/dt, so we will differentiate the above equation
![V^{1.4} \frac{dP}{dt} + P\frac{d[V^{1.4} ]}{dt} = \frac{d[C]}{dt}](https://tex.z-dn.net/?f=V%5E%7B1.4%7D%20%5Cfrac%7BdP%7D%7Bdt%7D%20%2B%20P%5Cfrac%7Bd%5BV%5E%7B1.4%7D%20%5D%7D%7Bdt%7D%20%20%3D%20%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)

lets solve for dV/dt, we will have

(plugged in all the values at the instant)
= 26.466
Therefore, the volume increasing at the rate of 26.466cm³/min at this instant