Answer:
Radius, r = 0.00523 meters
Explanation:
It is given that,
Magnetic field, 
Current in the toroid, I = 9.6 A
Number of turns, N = 6
We need to find the radius of the toroid. The magnetic field at the center of the toroid is given by :

r = 0.00523 m
or

So, the radius of the toroid is 0.00523 meters. Hence, this is the required solution.
To solve this problem we will apply the geometric concepts of displacement according to the description given. Taking into account that there is an initial displacement towards the North and then towards the west, therefore the speed would be:


Travel north 2mph and west to 1mph, then,


The route is done exactly the same to the south and east, so make this route twice, from the definition of speed we have to




Therefore the total travel time for the man is 1.15hour.
Both a molten metallic core and reasonably fast rotation.
Answer:
Momentum, p = 23250 kg m/s
Explanation:
Given that
Mass of a car, m = 1550 kg
Speed pf car, v = 15 m/s
We need to find the momentum of the car. The formula for the momentum of an object is given by :
p = mv
Substituting all the values in the above formula
p = 1550 kg × 15 m/s
p = 23250 kg m/s
So, the momentum of the car is 23250 kg m/s.
Answer:
v₁f = 0.5714 m/s (→)
v₂f = 2.5714 m/s (→)
e = 1
It was a perfectly elastic collision.
Explanation:
m₁ = m
m₂ = 6m₁ = 6m
v₁i = 4 m/s
v₂i = 2 m/s
v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i + ((2m₂) / (m₁ + m₂)) v₂i
v₁f = ((m – 6m) / (m + 6m)) * (4) + ((2*6m) / (m + 6m)) * (2)
v₁f = 0.5714 m/s (→)
v₂f = ((2m₁) / (m₁ + m₂)) v₁i + ((m₂ – m₁) / (m₁ + m₂)) v₂i
v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)
v₂f = 2.5714 m/s (→)
e = - (v₁f - v₂f) / (v₁i - v₂i) ⇒ e = - (0.5714 - 2.5714) / (4 - 2) = 1
It was a perfectly elastic collision.