The location of the negative charges is evenly distributed throughout the entire atom.
J. J. Tomson concluded that atoms are divisible and that the corpuscles are their building blocks.
Atoms are made up of smaller particles.
J. J. Thomson discovered the electron ( the negative charges of the atom) in 1897.
His "plum pudding" model (1904) suggested: the electrons are embedded in the positive charge and evenly distributed throughout the entire atom.
With this model, he abandoned his earlier hypothesis that the atom was composed of immaterial vortices.
Later, Rutherford demonstrate that J.J Thompson's Plum Pudding model was not accurate.
More info about Thomson’s plum pudding model: brainly.com/question/6319700
#SPJ4
Answer:
the enantiomeric excess of the mixture is 40%
Explanation:
The computation of the enantiomeric excess of the mixture is shown below:
As we know that

Hence, the enantiomeric excess of the mixture is 40%
Answer:
Nothing will happen as long as the magnitude of charges remains same...
Explanation:
We know that protons are 1836 times more massive than electrons but they have same magnitude of charge overall. So, if we reverse the polarities the system would still be stable as long as the magnitudes of charges are stable and vice versa.
Answer:
Explanation:
The gas ideal law is
PV= nRT (equation 1)
Where:
P = pressure
R = gas constant
T = temperature
n= moles of substance
V = volume
Working with equation 1 we can get

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.
or
(equation 2)
The cylindrical container has a constant pressure p
The volume is the volume of a cylinder this is

Where:
r = radius
h = height
(pi) = number pi (3.1415)
This cylinder has a radius, r and height, h so the volume is 
Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:
Replacing these values in the equation 2 we get:
(equation 2)
Answer:
Shorter
Explanation:
As a wavelength increases in size, its frequency, and energy (E) decrease. From these equations, you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer. There are two basic types of waves: mechanical and electromagnetic.