Answer:
Separation by density
Explanation:
Mixtures are made up of two or more pure substances which tends to keep their individual identities. These components can be separated from each other by different physical techniques.
Mixtures are further classified as;
(i) Homogenous Mixture:
In this type of the mixtures the components are uniformly mixed and their properties as well as composition as uniform throughout. Such mixtures are also called as solutions.
The physical methods used to separate these components from each other are distillation (taking heat and pressure into account), Solvent extraction, Magnetic separation, Chromatography e.t.c.
(ii) Homogenous Mixture:
In this type of the mixtures the components are not uniformly mixed and their physical properties and composition are also not uniform.
The physical methods used to separate these components from each other are Filtration, Magnetic Separation, Centrifugation, Flotation e.t.c.
So, in given options the density can play role by settling the massive components of heterogenous mixture to sit at the bottom and separated
For a first order reaction, the half life is inversely proportional to the rate constant.
The formula is
half life = ln(2)/k = 0.693/k
where k is the rate constant
t = 5.50 minutes
k = ln(2)/5.50 = 0.126 min^-1
Your rate constant is 0.126 min^-1.
LIKE DISSOLVES LIKE. Since Ccl4 is non-polar, it'll be soluble in any non-polar solvent. Hope this helps you!
The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. ... If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.
The atom<span> then has more protons than electrons and so it will be positively charged, a positive </span>ion<span>. Example: A </span>magnesium atom<span> may lose two electrons and </span>become<span> a Mg2+ </span>ion<span>. Non-metal </span>atoms<span> may gain electrons and </span>become<span> negatively charged. ... (It loses two electrons.)</span>