Answer:
It is called a surface wave (rayleigh wave) that transmits its energy with the wind blowing onto its surface.Hope this helps
It is Humid Continental but i could be wrong
Answer:
q = 7.4 10⁻¹⁰ C
Explanation:
a) The magnetic force is given by the expression
F = q v x B
Where the blacks indicate vectors, q is the electric charge, v at particle velocity and B the magnitude of the magnetic field. If the velocity is perpendicular to the magnetic field, the sine is 1
F = q v B
Let's calculate the charge
q = F / vB
q = 1.00 10⁻¹² / 30.0 B
For the magnetic field of the earth we have a value between 25μT and 65μT, an intermediate value would be 45 μT, let's use this value.
q = 1 10⁻¹² / (30 45 10⁻⁶)
q = 7.4 10⁻¹⁰ C
b) In laboratories and modern electronics, currents of up to 1 10⁻⁶ A can be achieved without much difficulty, in advanced and research laboratories currents of up to 1 10⁻¹² can be managed. Load values (coulomb) cannot they are widely used today for work, but 1 mA = 3.6C, so we see that getting loads with the value of 10⁻¹⁰ C implies very small current less than 1 10⁻¹³ A, which only in laboratories of Very specialized can be created. Consequently, from the above it would be difficult to find loads lower than the calculated
The electrostatic charge is the one created by the friction between two surfaces, it is an indicated charge, in this case it would be possible to have better wing loads found from 10⁻¹⁰C
Answer:
Free-body diagrams are defined as the diagram that represents the direction and magnitude of all forces that act on an object.
There are some limitations of the free-body diagrams, that are:
- The free-body diagram is based on coordinate system that increases the complexity of the diagram.
- There are lot of forces acting on an object such as friction, gravity, drag, tension, and normal force and to calculate the end result, it is important to determine the correct direction of all the forces otherwise wrong direction of any one of the force can give the wrong answer.
- Free-body diagrams do not depend on the size and shape of the body, that is why unable to calculate the rotation and torque.
Answer:
<em>T</em><em>he value of work being done on the object is 958J.</em>
Explanation:
<em>Work</em><em> done</em><em> </em><em>is </em><em>equal</em><em> to</em><em> </em><em>force</em><em> </em><em>multiply</em><em> by</em><em> </em><em>distance,</em><em> </em><em>but </em><em>when</em><em> </em><em>the </em><em>angle</em><em> </em><em>is </em><em>between</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>and</em><em> </em><em>distance</em><em> </em><em>work</em><em> </em><em>done=</em><em>Force</em><em> (</em><em>cos</em><em> </em><em>theta)</em><em> </em><em>×</em><em> </em><em>distance</em>
<em>Work</em><em> done</em><em> </em><em>=</em><em> </em><em>Force(</em><em>cos </em><em>theta</em><em>)</em><em> </em><em>×</em><em> </em><em>distance</em>
<em>Work</em><em> done</em><em> </em><em>=</em><em> </em><em>2</em><em>5</em><em>N</em><em>(</em><em>cos </em><em>4</em><em>0</em><em>.</em><em>0</em><em>°</em><em>)</em><em> </em><em>×</em><em> </em><em>5</em><em>0</em><em>m</em>
<em>Work</em><em> done</em><em> </em><em>=</em><em> </em><em>2</em><em>5</em><em>N</em><em>(</em><em>0</em><em>.</em><em>7</em><em>6</em><em>6</em><em>0</em><em>)</em><em> </em><em>×</em><em> </em><em>5</em><em>0</em><em>m</em>
<em>Work</em><em> done</em><em> </em><em>=</em><em> </em><em>19.15N </em><em>×</em><em> </em><em>5</em><em>0</em><em>m</em>
<em>Work</em><em> done</em><em> </em><em>=</em><em> </em><em>957.5J </em><em>=</em><em> </em><em>9</em><em>5</em><em>8</em><em>J</em>
<em>T</em><em>herefore</em><em> the</em><em> </em><em>value</em><em> of</em><em> </em><em>work</em><em> </em><em>being</em><em> </em><em>done </em><em>on </em><em>the</em><em> </em><em>object</em><em> </em><em>is </em><em>9</em><em>5</em><em>8</em><em>J</em><em>.</em>