Answer:
The sound travels differently in different medium according the density of the medium.
Explanation:
The sound travels faster in dense medium and can be heard by the vibration of the bone present in the ear. The ear plugs reduce the sound intensity in both medium water and on land (air).
In air the sound is not heard properly due to the earplugs that stops the as the vibration are not able to produce as sound is not able to reach to middle ear, but Navy researchers have discovered that sound under water is heard by the bone present behind the ear, vibrations mastoid.
Answer:
c. They hit at the same time
b. BGS
Explanation:
A marble dropped (initial vertical velocity is 0) will land at the same time as a marble launched horizontally (initial vertical velocity is 0) from the same height.
Boat S has a net speed of 5 m/s (10 − 5).
Boat B has a net speed of 15 m/s (10 + 5).
Boat G has a net speed of ≈11.2 m/s (√(10² + 5²)).
<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
<h2>Answer: It becomes an Ion
</h2>
When an atom has gained or lost electrons (negative charge), it becomes an ion.
In this sense:
<h2>I
ons are atoms that have <u>
gained or lost</u>
electrons in their electronic cortex.
</h2><h2>
</h2>
If a neutral atom <u>loses electrons</u>, it remains with an excess of positive charge and transforms into a positive ion or <u>cation</u>, whereas if a neutral atom <u>gains electrons</u>, it acquires an excess of negative charge and transforms into a negative ion or <u>anion</u>.
It is then how ions form bonds with other atoms differently depending on the number of electrons they have.
Answer:
1. True WA > WB > WC
Explanation:
In this exercise they give work for several different configurations and ask that we show the relationship between them, the best way to do this is to calculate each work separately.
A) Work is the product of force by distance and the cosine of the angle between them
WA = W h cos 0
WA = mg h
B) On a ramp without rubbing
Sin30 = h / L
L = h / sin 30
WB = F d cos θ
WB = F L cos 30
WB = mf (h / sin30) cos 30
WB = mg h ctan 30
C) Ramp with rubbing
W sin 30 - fr = ma
N- Wcos30 = 0
W sin 30 - μ W cos 30 = ma
F = W (sin30 - μ cos30)
WC = mg (sin30 - μ cos30) h / sin30
Wc = mg (1 - μ ctan30) h
When we review the affirmation it is the work where there is rubbing is the smallest and the work where it comes in free fall at the maximum
Let's review the claims
1. True The work of gravity is the greatest and the work where there is friction is the least
2 False. The job where there is friction is the least
3 False work with rubbing is the least
4 False work with rubbing is the least