The answer is true a convex lens can produce a real image but not a viral image
Answer:
Explanation:
Given that
g=9.8m/s²
The spring constant is
k=50N/m
The length of the bungee cord is
Lo=32m
Height of bridge which one end of the bungee is tied is 91m
A steel ball of mass 92kg is attached to the other end of the bungee.
The potential energy(Us) of the steel ball before dropped from the bridge is given as
P.E= mgh
P.E= 92×9.8×91
P.E= 82045.6 J
Us= 82045.6 J
Potential energy)(Uc) of the cord is given as
Uc= ½ke²
Where 'e' is the extension
Then the extension is final height extended by cord minus height of cord
e=hf - hi
e=hf - 32
Uc= ½×50×(hf-32)²
Uc=25(hf-32)²
Using conservation of energy,
Then,
The potential energy of free fall equals the potential energy in string
Uc=Us
25(hf-32)²=82045.6
(hf-32)² = 82045.6/25
(hf-32)²=3281.825
Take square root of both sides
√(hf-32)²=√(3281.825)
hf-32=57.29
hf=57.29+32
hf=89.29m
We neglect the negative sign of the root because the string cannot compressed
Answer:
R2 = 10.31Ω
Explanation:
For two resistors in parallel you have that the equivalent resistance is:
(1)
R1 = 13 Ω
R2 = ?
The equivalent resistance of the circuit can also be calculated by using the Ohm's law:
(2)
V: emf source voltage = 23 V
I: current = 4 A
You calculate the Req by using the equation (2):

Now, you can calculate the unknown resistor R2 by using the equation (1):

hence, the resistance of the unknown resistor is 10.31Ω
Increasing the temperature causes the particles in the reaction to become kinetically excited, hitting one another in increasing frequency. Increased collision among means faster rate or reaction.