1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
2 years ago
11

When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the str

ains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point
Engineering
1 answer:
Murljashka [212]2 years ago
3 0

The question is incomplete. The complete question is :

The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .

When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?

Solution :

Given data :

Diameter of the rod : 46 mm

Torque, T = 85 Nm

The polar moment of inertia of the shaft is given by :

$J=\frac{\pi}{32}d^4$

$J=\frac{\pi}{32}\times (46)^4$

J = 207.6 mm^4

So the shear stress at point  A is :

$\tau_A =\frac{Tc_A}{J}$

$\tau_A =\frac{85 \times 10^3\times 12 }{207.6}$

$\tau_A = 4913.29 \ MPa$

Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.

You might be interested in
A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
kozerog [31]

Answer:

a)Wt =25.68 lbf

b)Wt = 150 lbf

F= 899.59 N

Explanation:

Given that

g = 5.48 ft/s^2.

m= 150 lbm

a)

Weight on the spring scale(Wt) = m g

We know that

1\ lbf=32.17 \ lmb.ft/s^2

Wt = 150 x 5.48/32 lbf

Wt =25.68 lbf

b)

On the beam scale

This is scale which does not affects by gravitational acceleration.So the wight on the beam scale will be 150 lbf.

Wt = 150 lbf

If the plane is moving upward with acceleration 6 g's then the for F

F = m a

We know that

1\ ft/s^2= 0.304\ m/s^2

5.48\ ft/s^2= 1.66\ m/s^2

a=6 g's

a=9.99\ m/s^2

So

F = 90 x 9.99 N

F= 899.59 N

3 0
3 years ago
La probabilidad de que un nuevo producto tenga éxito es de 0.85. Si se eligen 10 personas al azar y se les pregunta si compraría
liq [111]

Answer:

La probabilidad pedida es 0.820196

Explanation:

Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :

X: '' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''

Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante (p=0.85) y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a X como una variable aleatoria Binomial. Esto se escribe :

X ~ Bi(n,p) en donde ''n'' es el número de personas entrevistadas y ''p'' es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.

Utilizando los datos ⇒ X ~ Bi(10,0.85)

La función de probabilidad de la variable aleatoria binomial es :

p_{X}(x)=P(X=x)=\left(\begin{array}{c}n&x\end{array}\right)p^{x}(1-p)^{n-x}    con x=0,1,2,...,n

Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :

P(X=x)=\left(\begin{array}{c}10&x\end{array}\right)(0.85)^{x}(0.15)^{10-x} con x=0,1,2,...,10

Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

P(X\geq 8)=P(X=8)+P(X=9)+P(X=10)

Calculando P(X=8), P(X=9) y P(X=10) por separado y sumando, obtenemos que P(X\geq 8)=0.820196

7 0
3 years ago
Water at atmospheric pressure boils on the surface of a large horizontal copper tube. The heat flux is 90% of the critical value
masya89 [10]

Answer:

The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C

Explanation:

The properties of water at 100°C and 1 atm are:

pL = 957.9 kg/m³

pV = 0.596 kg/m³

ΔHL = 2257 kJ/kg

CpL = 4.217 kJ/kg K

uL = 279x10⁻⁶Ns/m²

KL = 0.68 W/m K

σ = 58.9x10³N/m

When the water boils on the surface its heat flux is:

q=0.149h_{fg} \rho _{v} (\frac{\sigma (\rho _{L}-\rho _{v})}{\rho _{v}^{2} }  )^{1/4} =0.149*2257*0.596*(\frac{58.9x10^{-3}*(957.9-0.596) }{0.596^{2} } )^{1/4} =18703.42W/m^{2}

For copper-water, the properties are:

Cfg = 0.0128

The heat flux is:

qn = 0.9 * 18703.42 = 16833.078 W/m²

q_{n} =uK(\frac{g(\rho_{L}-\rho _{v})     }{\sigma })^{1/2} (\frac{c_{pL}*deltaT }{c_{fg}h_{fg}Pr  } \\16833.078=279x10^{-6} *2257x10^{3} (\frac{9.8*(957.9-0.596)}{0.596} )^{1/2} *(\frac{4.127x10^{3}*delta-T }{0.0128*2257x10^{3}*1.76 } )^{3} \\delta-T=20.4

The tube surface temperature immediately after installation is:

Tinst = 100 + 20.4 = 120.4°C

For rough surfaces, Cfg = 0.0068. Using the same equation:

ΔT = 10.8°C

The tube surface temperature after prolonged service is:

Tprolo = 100 + 10.8 = 110.8°C

8 0
3 years ago
You are hitting a nail with a hammer (mass of hammer =1.8lb) the initial velocity of the hammer is 50 mph (73.33 ft/sec). The ti
Archy [21]

Answer:

The nail exerts a force of 573.88 Pounds on the Hammer in positive j direction.

Explanation:

Since we know that the force is the rate at which the momentum of an object changes.

Mathematically \overrightarrow{F}=\frac{\Delta \overrightarrow{p}}{\Delta t}

The momentum of any body is defines as \overrightarrow{p}=mass\times \overrightarrow{v}

In the above problem we see that the moumentum of the hammer is reduced to zero in 0.023 seconds thus the force on the hammer is calculated using the above relations as

\overrightarrow{F}=\frac{m(\overrightarrow{v_{f}}-\overrightarrow{v_{i}})}{\Delta t}

\overrightarrow{F}=\frac{m(0-(-73.33)}{0.23}=\frac{1.8\times 73.33}{0.23}=573.88Pounds

6 0
3 years ago
Differences between acidic and basic Bessemer process​
dybincka [34]

Answer:

In the acid processes, deoxidation can take place in the furnaces, leaving a reasonable time for the inclusions to rise into the sla*g and so be removed before casting. Whereas in the basic furnaces, deoxidation is rarely carried out in the presence of the sla*g, otherwise phosphorus would return to the metal.

5 0
2 years ago
Other questions:
  • WHEN WAS THE FIRST CAR INVENTED?
    13·2 answers
  • The outer surface temperature of a glass filled with iced water may drop below the dew-point temperature of the surrounding air,
    5·1 answer
  • For a 20 ohm resistor R, the current i = 2 A. What is the voltage V? Submit your answer as a number without units. ​
    12·1 answer
  • A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic
    10·1 answer
  • How did engineers help to create a ceiling fan
    8·1 answer
  • As an employee, who is supposed to provide training on the chemicals you are handling or come in contact with at work?
    5·2 answers
  • A front wheel drive vehicle with four wheel disc brakes is pulling to the left. Tech A says an external kink or internal restric
    13·1 answer
  • A control system that is used in elevator system
    7·1 answer
  • A fine-grained soil has a liquid limit of 200%, determined from the Casagrande cup method. The plastic limit was measured by rol
    15·1 answer
  • (,,)=^3−^3+^3, where is the sphere ^2 + ^2 + ^2=^
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!