The stoichiometry of the reaction gives the molar ratio in which the reactants react with each other and the ratio in which products are formed.
The coefficients of the reactants in the reaction follow the stoichiometry
the balanced chemical equation for the reaction is as follows;
2C₃H₆(g) + 9O₂(g) ---> 6CO₂(g) + 6H₂O(l)
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.
Density is the ratio of mass to volume. The substance with the lowest density has the largest volume. The volume of magnesium will be the largest.
<h3>What is density?</h3>
Density is the mass per volume of the substance. It is denoted by the Latin letter rho (ρ) or D. It is the division of the mass in kilograms to the volume in cubic meters.
The relation of the density is inversely proportional to the volume and when the order is given in increasing order of density then magnesium will have the largest volume as it has the least density.
Therefore, magnesium has the largest volume.
Learn more about density here:
brainly.com/question/17596236
#SPJ1