<span>The population of snowshoe hare would outgrow the food supply, so there would be less food available.
</span>
Answer:
When the pressure increases to 2.35 atm, the temperature will increase to 378 K
Explanation:
Step 1: Data given
The initial pressure = 1.82 atm
The initial temperature = 293 K
The pressure will be increased to 2.35 atm
Step 2: Calculate the new temperature
P1/T1 = P2/T2
⇒with P1 = the initial pressure = 1.82 atm
⇒with T1 = the initial temperature = 293 K
⇒with P2 = the increased pressure = 2.35 atm
⇒with T2 = the new temperature = TO BE DETERMINED
1.82atm / 293 K = 2.35 atm / T2
T2 = 2.35 atm / (1.82 atm/293 K)
T2 = 2.35 / 0.0062116
T2 = 378 K
When the pressure increases to 2.35 atm, the temperature will increase to 378 K
Answer:
The amount of drug left in his body at 7:00 pm is 315.7 mg.
Explanation:
First, we need to find the amount of drug in the body at 90 min by using the exponential decay equation:
Where:
λ: is the decay constant =
: is the half-life of the drug = 3.5 h
N(t): is the quantity of the drug at time t
N₀: is the initial quantity
After 90 min and before he takes the other 200 mg pill, we have:
Now, at 7:00 pm we have:
Therefore, the amount of drug left in his body at 7:00 pm is 315.7 mg (from an initial amount of 400 mg).
I hope it helps you!
When Sodium chloride or table salt is a compound formed
when sodium loses its valence electron to chlorine, the type of bond formation
that takes place in sodium chloride is the Lewis Bond.
Answer:
0.38
Explanation:
Molar mass of thiophene= 84g/mol
Mass of thiophene = 37g
Number of moles= 37/84= 0.44 moles
Molar mass of heptane= 100 g/mol
Mass of heptane = 72g
Number of moles = 72/100= 0.72 moles
Total number of moles= 0.44 + 0.72= 1.16 moles
mole fraction of thiophene = 0.44/1.16= 0.38