Missing details: figure of the problem is attached.
We can solve the exercise by using Poiseuille's law. It says that, for a fluid in laminar flow inside a closed pipe,

where:
is the pressure difference between the two ends
is viscosity of the fluid
L is the length of the pipe
is the volumetric flow rate, with
being the section of the tube and
the velocity of the fluid
r is the radius of the pipe.
We can apply this law to the needle, and then calculating the pressure difference between point P and the end of the needle. For our problem, we have:
is the dynamic water viscosity at 
L=4.0 cm=0.04 m

and r=1 mm=0.001 m
Using these data in the formula, we get:

However, this is the pressure difference between point P and the end of the needle. But the end of the needle is at atmosphere pressure, and therefore the gauge pressure (which has zero-reference against atmosphere pressure) at point P is exactly 3200 Pa.
1) the weight of an object at Earth's surface is given by

, where m is the mass of the object and

is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is

2) On Mars, the value of the gravitational acceleration is different:

. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth:

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as

<span>6) On Earth, the gravity acceleration is </span>

<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
</span>

<span>
</span>
I ueueeieueueuekdududieisidudud
Answer:
22.37 miles per hour
:) please give me brainliest
Explanation: