S = ut + 0.5at^2
<span>10 = 0 + 0.5(9.81)t^2 {and if g = 10 then t^2 = 2 so t ~1.414} </span>
<span>t^2 ~ 2.04 </span>
<span>t ~ 1.43 seconds</span>
Answer:
A simple pulley is a wheel with a rope that allows you to pull one end and have it lift whatever is on the other end. A modern, common example of this is a crane, often used in construction.
Explanation:
Gravity is the force that pulls you down.
(This is kind of a duh! question ... How do we know
which way is "down" ? We feel gravity, and we call
that the "down" direction.)
Magnetic force holds things to fridge doors.
Contact forces need to touch something in order to
exert their force.
Example: Gravity is NOT a contact force.
I don't know about "rubbing things away".
This might be a description of friction, but if so,
it's not a good one.
Buoyant force is what keeps floating things floating.
Air resistance slows things down when they move in air.
Answer:
i) 21 cm
ii) At infinity behind the lens.
iii) A virtual, upright, enlarged image behind the object
Explanation:
First identify,
object distance (u) = 42 cm (distance between object and lens, 50 cm - 8 cm)
image distance (v) = 42 cm (distance between image and lens, 92 cm - 50 cm)
The lens formula,

Then applying the new Cartesian sign convention to it,

Where f is (-), u is (+) and v is (-) in all 3 cases. (If not values with signs have to considered, this method that need will not arise)
Substituting values you get,
i) 
f = 21 cm
ii) u =21 cm, f = 21 cm v = ?
Substituting in same equation
v ⇒ ∞ and image will form behind the lens
iii) Now the object will be within the focal length of the lens. So like in the attachment, a virtual, upright, enlarged image behind the object.