1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
6

A force is represented by a ____ the choice of a ____ is necessary​

Physics
1 answer:
Vlad [161]3 years ago
3 0

Answer:

a force is represented by a<u> vector </u>the choice of a <u>reference frame</u> is necessary​

Explanation:

You might be interested in
A projectile is launched at an angle above the
gtnhenbr [62]
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.

The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.

v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s

Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.

The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.

Combining this together we get:
(1) vx=40m/s and vy=10m/s

7 0
3 years ago
Sail boats utilize energy from the wind. Wind energy is a form of
yarga [219]
A. kinetic energy hope this helps
6 0
3 years ago
Which astronomer supported the belief that earth was at the center fo the universe?
MissTica
B. Ptolemy believed that the earth was the center of the universe
4 0
4 years ago
Read 2 more answers
In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400
liq [111]

Complete Question:

In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400 kg). Both cars then slide with locked wheels until the frictional force from the slick road (with a low ?k of 0.15) stops them, at distances dA = 6.1 m and dB = 4.4 m. What are the speeds of (a) car A and (b) car B at the start of the sliding, just after the collision? (c) Assuming that linear momentum is conserved during the collision, find the speed of car B just before the collision.

Answer:

a) Speed of car A at the start of sliding = 4.23 m/s

b) speed of car B at the start of sliding = 3.957 m/s

c) Speed of car B before the collision = 7.28 m/s

Explanation:

NB: The figure is not provided but all the parameters needed to solve the question have been given.

Let the frictional force acting on car A, f_{ra} = \mu mg\\............(1)

Since frictional force is a type of force, we are safe to say f_{ra} = ma.......(2)

Equating (1) and (2)

ma = \mu mg\\a = \mu g\\\mu = 0.15\\a = 0.15 * 9.8 = 1.47 m/s^{2}

a) Speed of A at the start of the sliding

d_{A} = 6.1 m\\Speed of A at the start of sliding, v_{A} = \sqrt{2ad_{A} }\\ v_{A} = \sqrt{2*1.47*6.1 } \\v_{A} = \sqrt{17.934 } \\v_{A} = 4.23 m/s

b) Speed of B at the start of the sliding

d_{A} = 4.4 m\\Speed of A at the start of sliding, v_{B} = \sqrt{2ad_{B} }\\ v_{B} = \sqrt{2*1.47*4.4 } \\v_{B} = \sqrt{12.936 } \\v_{B} = 3.957 m/s

Let the speed of car B before collision = v_{B1}

Momentum of car B before collision = m_{B} v_{B1}

Momentum after collision = m_{A} v_{A} + m_{B} v_{B2}

Applying the law of conservation of momentum:

m_{B} v_{B1}  = m_{A} v_{A} +m_{B} v_{B2}

m_{A} = 1100 kg\\m_{B} = 1400 kg

(1400*v_{B1} ) = (1100 * 4.23) + ( 1400 * 3.957)\\(1400*v_{B1} ) = 10192.8\\v_{B1} = 10192.8/1400\\v_{B1 = 7.28 m/s

3 0
4 years ago
Read 2 more answers
A student drops a ball from the top of a 10-meter tall building. The ball leaves the thrower's hand with a zero speed. What is t
Sergio [31]

Answer:

14 m/s

Explanation:

u = 0, h = 10 m, g = 9.8 m/s^2

Use third equation of motion

v^2 = u^2 + 2 g h

Here, v be the velocity of ball as it just strikes with the ground

v^2 = 0 + 2 x 9.8 x 10

v^2 = 196

v = 14 m/s

7 0
3 years ago
Other questions:
  • Which of the following is not true about centripetal force? Check all that
    13·1 answer
  • Explain why the energy in the sun moves out toward the surface
    8·1 answer
  • 3.88 milligrams is equal to how many centigrams?
    10·2 answers
  • What refers to a soils ability to transmit water
    6·1 answer
  • If a jumping frog can give itself the same initial speed regardless of the direction in which it jumps (forward or straight up),
    10·1 answer
  • 1.) When the acceleration is zero, what can you say about the velocity of an object?
    11·1 answer
  • According to ohms law, as the voltage increases across a 40 ohm resistor what happens to the current, resistors, and resistance
    8·1 answer
  • Poop<br> ppppppppppppppppppppppppppppppp
    13·2 answers
  • Which of the following is not an element of installment credit?
    10·1 answer
  • 2. A jack exerts a vertical force of 4.5 X 103
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!