Answer:
6.25 grams is the mass of solute dissolved.
Explanation:
w/w % : The percentage mass or fraction of mass of the of solute present in total mass of the solution.

Mass of the solution = 50.0 g
Mass of the solvent = x
w/w % = 12.5%

x = 6.25 g
6.25 grams is the mass of solute dissolved.
Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles =
= 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺
Answer:
The equilibrium shifts to the left, and the concentration of Ba2+(aq) decreases
Explanation:
Whenever a solution of an ionic substance comes into contact with another ionic compound with which it shares a common ion, the solubility of the ionic substance in solution decreases significantly.
In this case, both BaSO4 and Na2SO4 both possess the SO4^2- anion. Hence SO4^2- anion is the common ion. Given the equilibrium;
BaSO4(s) <—> Ba2+ (aq) + SO4 2- (aq), addition of Na2SO4 will decrease the solubility of BaSO4 due to the presence of a common SO4^2- anion compared to pure water.
This implies that the equilibrium will shift to the left, (more undissoctiated BaSO4) hence decreasing the Ba^2+(aq) concentration.
The answer is likely to be A