<u>Answer:</u>
Nitrogen gas be a mineral only, if it is in organic forms.
<u>Explanation:</u>
Most of the forms of organic nitrogen is not be taken by plants, with the exception in the form of small organic molecules. Also plants can promptly take the nitrogen when it is in other forms like ammonia and nitrate.
The microorganisms in the soil converts the organic forms of nitrogen to mineral form when they decompose organic matters and also fresh plant residues. This type of process is called mineralisation.
Answer:
just use the tongs and put it on a plate
Explanation:
Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.
Answer:
Molar concentration of CO₂ in equilibrium is 0.17996M
Explanation:
Based on the reaction:
NiO(s) + CO(g) ⇆ Ni(s) + CO₂(g)
kc is defined as:
kc = [CO₂] / [CO] = 4.0x10³ <em>(1)</em>
As initial concentration of CO is 0.18M, the concentrations in equilibrium are:
[CO] = 0.18000M - x
[CO₂] = x
Replacing in (1):
4.0x10³ = x / (0.18000-x)
720 - 4000x = x
720 = 4001x
x = 0.17996
Thus, concentrations in equilibrium are:
[CO] = 0.18000M - 0.17996 = 4.0x10⁻⁵
[CO₂] = x = <em>0.17996M</em>
<em></em>
Thus, <em>molar concentration of CO₂ in equilibrium is 0.17996M</em>
<em />
I hope it helps!