Answer:
v = 2,425 m / s
Explanation:
A simple pendulum has anergy stored at the highest point of the path and this energy is conserved throughout the movement.
highest point
Em₀ = U = m g y
lowest point
= K = ½ m v²
Em₀ = Em_{f}
mg y = ½ m v²
v = √ 2gy
let's calculate
v = √ (2 9.8 0.3)
v = 2,425 m / s
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=
Answer:
1832
Explanation:
From;
Δp Δx = h/4π
Δp = uncertainty in momentum
Δx = uncertainty in position
h= Plank's constant
But p =mv hence, Δp= Δmv
m= mass, v= velocity
mass of electron = 9.11 * 10^-31 Kg
Mass of proton = 1.67 * 10^-27 Kg
since m is a constant,
Δv = h/Δxm4π
For proton;
Δv = 6.6 * 10^-34/4 * 3.14 * 1.67 * 10^-27 * 1 * 10^-10
Δv = 315 ms-1
For electron;
Δv = 6.6 * 10^-34/4 * 3.14 * 9.11 * 10^-31 * 1 * 10^-10
Δv = 577000 ms-1
Ratio of uncertainty of electron to that of proton = 577000 ms-1/315 ms-1= 1832