This is 2 hertz. You can mark out 2 full wavelengths in the second of time.
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
Answer:
Force of friction, f = 751.97 N
Explanation:
it is given that,
Mass of the car, m = 1100 kg
It is parked on a 4° incline. We need to find the force of friction keeping the car from sliding down the incline.
From the attached figure, it is clear that the normal and its weight is acting on the car. f is the force of friction such that it balances the x component of its weight i.e.


f = 751.97 N
So, the force of friction on the car is 751.97 N. Hence, this is the required solution.
Answer:
C.) The Distance DH = 1.5 lambda
Explanation:
This statement C.) is false, because it does not count as the 1.5 wavelength, it is less than 1 wavelength.