1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VladimirAG [237]
4 years ago
12

Figure 1 shows a wave movement during one second. What is the frequency of the wave

Physics
2 answers:
AURORKA [14]4 years ago
8 0
2 hertz, as explained previously- I'm afraid m/s is a completely different measurement
Andreyy894 years ago
4 0
This is 2 hertz.  You can mark out 2 full wavelengths in the second of time.
You might be interested in
Genes are organized on matching pairs of _______.
natta225 [31]

Answer:

homologous chromosomes

Explanation:

6 0
3 years ago
8. A meter reader determines that a business has used 5000 kW.h of energy in 4 months. If
ladessa [460]

Answer:

ENERGY AND COST. One kllowatt hour is 1,000 watts of power for one hour of time. ... Determine power: P = V XI ... Calculate the total kilowatt hours used. ... If the electric costs are 150 per kWh, how much does it cost to run the refrigerator in ... 8. A room was lighted with three 100-watt bulbs for 5 hours per day. If the cost of.

Explanation:

7 0
3 years ago
A force of 60 N is applied to a skier to pull him along a horizontal surface so that his speed remains constant. If the coeffici
matrenka [14]

Answer:

1200\ \text{N}

Explanation:

F = Force on the skier = 60 N

\mu = Coefficient of friction = 0.05

w = Weight of skier

Force is given by

F=\mu w

\Rightarrow w=\dfrac{F}{\mu}

\Rightarrow w=\dfrac{60}{0.05}=\dfrac{6000}{5}

\Rightarrow w=1200\ \text{N}

Weight of the skier on which the force is being applied is 1200\ \text{N} .

7 0
3 years ago
A force of 44 N will stretch a rubber band 88 cm ​(0.080.08 ​m). Assuming that​ Hooke's law​ applies, how far will aa 11​-N forc
Setler79 [48]

Answer:

<em>The rubber band will be stretched 0.02 m.</em>

<em>The work done in stretching is 0.11 J.</em>

Explanation:

Force 1 = 44 N

extension of rubber band = 0.080 m

Force 2 = 11 N

extension = ?

According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.

F = ke

where k = constant of elasticity

e = extension of the material

F = force applied.

For the first case,

44 = 0.080K

K = 44/0.080 = 550 N/m

For the second situation involving the same rubber band

Force = 11 N

e = 550 N/m

11 = 550e

extension e = 11/550 = <em>0.02 m</em>

<em>The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch</em>. This is in line with energy conservation.

potential energy stored = \frac{1}{2}ke^{2}

==> \frac{1}{2}* 550* 0.02^{2} = <em>0.11 J</em>

3 0
3 years ago
A uniform rod rotates in a horizontal plane about a vertical axis through one end. The rod is 3.46 m long, weighs 12.8 N, and ro
Mkey [24]

Answer:

a. Rotational inertia: 5.21kgm²

b. Magnitude of it's angular momentum: 123.32kgm²/s

Explanation:

Length of the rod = 3.46m

Weight of the rod = 12.8 N

Angular velocity of the rod= 226 rev/min

a. Rotational Inertia (I) about its axis

The formula for rotational inertia =

I = (1/12×m×L²) + m × ( L ÷ 2)²

Where L = length of the rod

m = mass of the rod

Mass of the rod is calculated by dividing the weight of the rod with the acceleration due to gravity.

Acceleration due to gravity = 9.81m/s²

Mass of the rod = 12.8N/ 9.81m/s²

Mass of the rod = 1.305kg

Rotational Inertia =

(1/12× 1.305 × 3.46²)+ 1.305 ( 3.46÷2)²

Rotational Inertia =  1.3019115 + 3.9057345

Rotational Inertia = 5.207646kgm²

Approximately = 5.21kgm²

b. The magnitude of the rod's angular momentum about the rotational axis is calculated as

Rotational Inertia about its axis × angular speed of the rod.

Angular speed of the rod is calculated as= (Angular velocity of the rod × 2π)/60

= (226×2π) /60

= 23.67 rad/s

Rotational Inertia = 5.21kgm²

The magnitude of the rod's angular momentum about the rotational axis

= 5.21kgm²× 23.67 rad/s

= 123.3207kgm²/s

Approximately = 123.32kgm²/s

7 0
3 years ago
Other questions:
  • Calculate the average speed of an automobile that travels 60km east and then 80km north in two hours
    9·1 answer
  • Fighter jet starting from airbase A flies 300 km east , then 350 km at 30° west of north and then 150km north to arrive finally
    11·1 answer
  • You get pulled over for running a red light. You explain to the police officer that the light appeared green to you due to the D
    12·2 answers
  • A simple harmonic oscillator consists of a block of mass 45 g attached to a spring of spring constant 240 N/m, oscillating on a
    11·2 answers
  • Need Help Please and Thank You). Question 1: Explain how longitudinal waves and transverse waves are similar to each other and d
    5·1 answer
  • The tension of a guitar string is increased by 40%. By what factor odes the fundamental frequency of vibration change? a. 1.13 b
    15·1 answer
  • A person pushes an object of mass 5.0 kg along the floor by applying a
    8·1 answer
  • Who was the first scientist to explore the moon with a telescope? A Isaac Newton B Johannes Kepler C Nicolaus Copernicus D Galil
    8·1 answer
  • 06
    14·1 answer
  • This is Formation of the Solar System Lab Report
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!