Answer:
A.The vertical velocity is constantly increasing as the ball falls.
B.The horizontal velocity does not noticeably change as the ball falls.
G.The horizontal velocity does not affect how long it will take the ball to fall to the floor.
H.The velocity vector of the ball changes as it travels through the air.
Explanation:
As the ball is projected horizontally so here the vertical component of the velocity is zero
So the time to reach the ground is given as

so we will have

so this is the same time as the ball is dropped from H height
Since there is no force in horizontal direction so its horizontal velocity will always remain constant while vertical velocity will change at constant rate which is equal to acceleration due to gravity.
So overall the velocity vector will change due to net acceleration g
Answer:
Intraductal Papillary Mucinous Neoplasm
Answer:
the kinetic energy lost due to friction is 22.5 J
Explanation:
Given;
mass of the block, m = 0.2 kg
initial velocity of the block, u = 25 m/s
final velocity of the block, v = 20 m/s
The kinetic energy lost due to friction is calculated as;

Therefore, the kinetic energy lost due to friction is 22.5 J
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3
Answer:
There would be more hours of sunlight at the equator