Explanation:
m = mass of burrito thrown by the student = 0.5 kg
a = acceleration of the burrito thrown by the student = 3 m/s²
F = force applied by the student on the burrito = ?
According to newton's second law , the net force on an object is the product of its mass and acceleration. it is given as
F = ma
inserting the values
F = (0.5) (3)
F = 1.5 N
hence the net force on the burrito comes out to be 1.5 N
<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building
Answer:
3.43 m/s^2
Explanation:
Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.
Using the equation for acceleration, we take the force and divide it by mass.
120/35
Answer: 3.43* m/s^2**
*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143
**Note: In case you're confused, this is meters per second squared.
Answer:
The bulb B glows brighter.
Explanation:
Given that,
A glows brightly and B glows dimly.
According to ohm's law,
Two light bulbs A and B are connected in series to a battery then the current will be same in both bulbs and the resistance is high of bulb A and low in bulb B.
If bulb A connect to a battery and bulb B connect to a same battery separately.
Then bulb B glows brighter because the resistance is high in bulb A so the current will be low.
The resistance is low in bulb B so the current will be high.
Hence, The bulb B glows brighter.
Particle with more energy move SLOWER than particles with less energy.