<span>D.) Rates of soil erosion are much lower during droughts that last several years.</span>
Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
Answer:

Explanation:
Hello!
In this case, according to the following chemical reaction:

It means that we need to compute the moles of hydrogen and oxygen that are reacting, via the ideal gas equation as we know the volume, pressure and temperature:

Thus, the yielded moles of water are computed by firstly identifying the limiting reactant:

Thus, the fewest moles of water are 0.0609 mol so the limiting reactant is oxygen; in such a way, by using the ideal gas equation once again, we compute the pressure of water:

Best regards!
So we have Barium nitrate with a solubility of 8.7g in 100g water at 20°C.
using that relation
i.e.
8.7g (barium nitrate) =100g (water)
1g barium nitrate = 100/8.7 g water
27g barium nitrate = (100/ 8.7 ) × 27
= 310.34 g
therefore,
you need 310.34g of water is in the jar.