Be, B, C, N (going from smallest to biggest)
Molality is defined as the number of moles of solute in 1 kg of solvent
the number of moles of solute - 8.1 mol
mass of solvent - 4847 g
there are 8.1 mol in 4847 g of solvent
we need to know how many moles are in 1 kg of solvent
therefore number of moles in 1 kg of solvent is - 8.1 mol / 4.847 kg
molality of solution is - 1.67 mol/kg
<u>Answer:</u> The pH of the solution is 9.71
<u>Explanation:</u>
1 mole of NaOH produces 1 mole of sodium ions and 1 mole of hydroxide ions.
We are given:
pOH of the solution = 7.2
To calculate the pH of the solution, we need to determine pOH of the solution. To calculate pOh of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=5.09\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D5.09%5Ctimes%2010%5E%7B-5%7DM)
Putting values in above equation, we get:

To calculate pH of the solution, we use the equation:

Hence, the pH of the solution is 9.71
Answer:
Electronegativity generally increases from left to right across a period,
Explanation:
The true statement from the given choices is that electronegativity generally increases from left to right across a period.
Electronegativity is the measure of the relative tendency with which an atom of the element attract valence electrons in a chemical bond.
Across a period electronegativity increases from left to right and decreases down the group.
This is due to reduction in metallic properties as we move across the period from left to right.
The phase change in which the water molecules become most orderly is the freezing. This is the process of changing water as liquid to its solidified form. The process of freezing is an exothermic which means that for this to occur, heat should be removed from the system.