Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ice cube is 
The temperature of the ice cube is
The mass of the copper cube is 
The final temperature of both substance is 
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
![Q = m_c * c_c * [T_c - T_f ]](https://tex.z-dn.net/?f=Q%20%3D%20%20m_c%20%20%2A%20%20c_c%20%2A%20%20%5BT_c%20%20-%20%20T_f%20%5D)
The specific heat of copper is 
Generally the heat gained by the ice cube is mathematically represented as

Here L is the latent heat of fusion of the ice with value 
So

=>
So
=> 
Answer:
no.
Explanation:
because the mass of an object never changes.
Answer:
A) The north pole of a bar magnet will attract the south pole of another bar magnet.
B) Earth's geographic north pole is actually a magnetic south pole.
E) The south poles of two bar magnets will repel each other.
Explanation:
<u>According to </u><u>classical physics</u>, a magnetic field always has two associated magnetic poles (north and south), the same happens with magnets. This means that if we break a magnet in half, we will have two magnets, where each new magnet will have a new south pole, and a new north pole.
This is because <u>for classical physics, naturally, magnetic monopoles can not exist. </u>
In this context, Earth is similar to a magnetic bar with a north pole and a south pole. This means, the axis that crosses the Earth from pole to pole is like a big magnet.
Now, by convention, on all magnets the north pole is where the magnetic lines of force leave the magnet and the south pole is where the magnetic lines of force enter the magnet.
Then, for the case of the Earth, the north pole of the magnet is located towards the geographic south pole and the south pole of the magnet is near the geographic north pole.
And it is for this reason, moreover, that the magnetic field lines enter the Earth through its magnetic south pole (which is the geographic north pole).