Answer:

Step-by-step explanation:
The equation
represents the discriminant of a quadratic. It is the part taken from under the radical in the quadratic formula.
For any quadratic:
- If the discriminant is positive, or greater than 0, the quadratic has two solutions
- If the discriminant is equal to 0, the quadratic has one distinct real solution (the solution is repeated).
- If the discriminant is negative, or less than 0, the quadratic has zero solutions
In the graph, we see that the equation intersects the x-axis at two distinct points. Therefore, the quadratic has two solutions and the discriminant must be positive. Thus, we have
.
Answer:
the answer would be 1/225
Answer:
c=7.07
Step-by-step explanation:
c²=a²+b²
c²=5²+5²
c²=25+25
c²=50
c=√50
c=7.07
B. c=7.07 (to nearest hundredth)
C. c=√50= 5√2 in radical form
Option 4 is the correct answer
Answer:
a) 7.79%
b) 67.03%
c) Cumulative Distribution Function

Step-by-step explanation:
We are given the following in the question:

where x is the duration of a call, in minutes.
a) P( calls last between 2 and 3 minutes)
![=\displaystyle\int^3_2 p(x)~ dx\\\\= \displaystyle\int^3_20.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^3_2\\\\=-\Big[e^{-0.3}-e^{-0.2}\Big]\\\\= 0.0779\\=7.79\%](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5E3_2%20p%28x%29~%20dx%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E3_20.1e%5E%7B-0.1x%7D~dx%5C%5C%5C%5C%3D%5CBig%5B-e%5E%7B-0.1x%7D%5CBig%5D%5E3_2%5C%5C%5C%5C%3D-%5CBig%5Be%5E%7B-0.3%7D-e%5E%7B-0.2%7D%5CBig%5D%5C%5C%5C%5C%3D%200.0779%5C%5C%3D7.79%5C%25)
b) P(calls last 4 minutes or more)
![=\displaystyle\int^{\infty}_4 p(x)~ dx\\\\= \displaystyle\int^{\infty}_40.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^{\infty}_4\\\\=-\Big[e^{\infty}-e^{-0.4}\Big]\\\\=-(0- 0.6703)\\= 0.6703\\=67.03\%](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_4%20p%28x%29~%20dx%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_40.1e%5E%7B-0.1x%7D~dx%5C%5C%5C%5C%3D%5CBig%5B-e%5E%7B-0.1x%7D%5CBig%5D%5E%7B%5Cinfty%7D_4%5C%5C%5C%5C%3D-%5CBig%5Be%5E%7B%5Cinfty%7D-e%5E%7B-0.4%7D%5CBig%5D%5C%5C%5C%5C%3D-%280-%090.6703%29%5C%5C%3D%200.6703%5C%5C%3D67.03%5C%25)
c) cumulative distribution function
