The circumference of a circle is (2π · the circle's radius).
The length of a semi-circle is (1π · the circle's radius) =
(π · 14.8) = 46.5 (rounded)
(The unit is the same as whatever the unit of the 14.8 is.)
Given:
u(initial velocity)=0
v(final velocity)= 10 m/s
t= 4 sec
Now we know that
v= u + at
Where v is the final velocity
u is the initial velocity
a is the acceleration measured in m/s^2
t is the time measured in sec
10=0+ax4
a=10/4
a=2.5 m/s^2
Answer: hello your question lacks the required diagram attached below is the required diagram
answer : Both cars will move backwards and stop due to friction.
Explanation:
Given that both cars are negatively charged, When the wedges are removed both cars will move backwards ( repelling each other ) because they are like poles, and Like poles repel each other. while unlike poles attract each other ( forward movement ) .
The cars will later come to a stop due to frictional forces between the cars and the surface.
Answer:
D
Explanation:
The greater the mass, the greater the inertia, and vice versa.
Remark: This means that a more massive object has a greater tendency to resist a change in its state of rest or motion.
Answer:
b. The current stays the same.
Explanation:
In the case given current is supplied by the battery to a bulb . Here, we should know that bulb also apply resistance to the flow of current .
Now, when an identical bulb is connected in parallel to the original bulb .
Therefore, both the resistance( bulb) are in parallel.
We know, when two resistance are in parallel , current through them is same and voltage is divided between them.
Therefore, in this case current stays same in the original bulb.
Hence, this is the required solution.