1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
15

What happens to the current supplied by the battery when you add an identical bulb in parallel to the original bulb?

Physics
1 answer:
Marysya12 [62]3 years ago
6 0

Answer:

b. The current stays the same.

Explanation:

In the case given current is supplied by the battery to a bulb . Here, we should know that bulb also apply resistance to the flow of current .

Now, when an identical bulb is connected in parallel to the original bulb .

Therefore, both the resistance( bulb) are in parallel.

We know, when two resistance are in parallel , current through them is same and voltage is divided between them.

Therefore, in this case current stays same in the original bulb.

Hence, this is the required solution.

You might be interested in
A rock hits a window and stops in 0.15 seconds. The net force on the rock is 58N during the collision. What is the magnitude of
nlexa [21]

Answer:

The change in momentum is  \Delta p =   0.7 \ kg\cdot m \cdot s^{-1}

Explanation:

From the question we are told that

    The time taken for the stone to stop is \Delta  t = 0.15 \ seconds

    The net force on the rock is  F =  58 \ N

   

The impulse of the rock can be mathematically represented as

     I  =  F * \Delta t

Substituting values

     I  =  58 * 0.15

    I  =  0.7\  kg * m  * s^{-1}

Now impulse is defined as  the rate at which momentum change

   Hence the change in momentum \Delta p  of the rock is equal to the impulse of the rock

 So  

       \Delta p =  I  =  0.7 \ kg\cdot m \cdot s^{-1}

7 0
3 years ago
A solid nonconducting sphere of radius R has a charge Q uniformly distributed throughout its volume. A Gaussian surface of radiu
anyanavicka [17]

Answer:

1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )

Explanation:

According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.

As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :

Q₁ = ∫ ρ dV

Here dV is the volume element of sphere of radius r.

Q₁ = ρ x 4π x ∫ r² dr

The limit of integration is from 0 to r as r is less than R.

Q₁ = (4π x ρ x r³ )/3

But volume charge density, ρ = \frac{3Q}{4\pi R^{3} }

So, Q_{1} = \frac{Qr^{3} }{R^{3} }

Applying Gauss law of electrostatics ;

∫ E ds = Q₁/ε₀

Here E is electric field inside the sphere and ds is surface element of sphere of radius r.

Substitute the value of Q₁ in the above equation. Hence,

E x 4πr² = ( Q x r³) / ( R³ x ε₀ )

7 0
3 years ago
Assume that you can drive at a constant speed of 100 kilometers per hour. suppose you started driving from the sun. how long wou
belka [17]
The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year. 
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
4 0
3 years ago
Suppose that you have a 680 Ω, a 720 Ω and a 1.20 kΩ resistor. (a) What is the maximum resistance you can obtain by combining th
Delvig [45]

Explanation:

As the given data is as follows.

    R_{1} = 680 \ohm ohm\ohm,    R_{2} = 720 \ohm ohm,

   R_{3} = 1.2 k\ohm = 1200 \ohm   (as 1 k ohm = 1000 m)

(a)   We will calculate the maximum resistance by combining the given resistances as follows.

      Max. Resistance = R_{1} + R_{2} + R_{3}

                                  = (680 + 720 + 1200) \ohm ohm

                                  = 2600 ohm

or,                               = 2.6 k\ohm ohm

Therefore, the maximum resistance you can obtain by combining these is 2.6 k\ohm ohm.

(b)   Now, the minimum resistance is calculated as follows.

      Min. Resistance = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}

                                 = \frac{1}{680} + \frac{1}{720} + \frac{1}{1200}

                                 = 3.683 \times 10^{-3} ohm

Hence, we can conclude that minimum resistance you can obtain by combining these is 3.683 \times 10^{-3} ohm.

3 0
3 years ago
Two charged particles are located on the x axis. The first is a charge 1Q at x 5 2a. The second is an unknown charge located at
sergejj [24]

Answer:

Q_2 = +/- 295.75*Q

Explanation:

Given:

- The charge of the first particle Q_1 = +Q

- The second charge = Q_2

- The position of first charge x_1 = 2a

- The position of the second charge x_2 = 13a

- The net Electric Field produced at origin is E_net = 2kQ / a^2

Find:

Explain how many values are possible for the unknown charge and find the possible values.

Solution:

- The Electric Field due to a charge is given by:

                               E = k*Q / r^2

Where, k: Coulomb's Constant

            Q: The charge of particle

            r: The distance from source

- The Electric Field due to charge 1:

                               E_1 = k*Q_1 / r^2

                               E_1 = k*Q / (2*a)^2

                               E_1 = k*Q / 4*a^2

- The Electric Field due to charge 2:

                               E_2 = k*Q_2 / r^2

                               E_2 = k*Q_2 / (13*a)^2

                               E_2 = +/- k*Q_2 / 169*a^2

- The two possible values of charge Q_2 can either be + or -. The Net Electric Field can be given as:

                               E_net = E_1 + E_2

                               2kQ / a^2 = k*Q_1 / 4*a^2 +/- k*Q_2 / 169*a^2

- The two equations are as follows:

        1:                   2kQ / a^2 = k*Q / 4*a^2 + k*Q_2 / 169*a^2

                               2Q = Q / 4 + Q_2 / 169

                               Q_2 = 295.75*Q

        2:                    2kQ / a^2 = k*Q / 4*a^2 - k*Q_2 / 169*a^2

                               2Q = Q / 4 - Q_2 / 169

                               Q_2 = -295.75*Q

- The two possible values corresponds to positive and negative charge Q_2.

7 0
3 years ago
Other questions:
  • A balanced chemical reaction obeys the law of
    9·2 answers
  • A hypothetical spherical planet consists entirely of iron. what is the period of a satellite that orbits this planet just above
    15·1 answer
  • A test rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward
    6·1 answer
  • While sitting motionless in a 5 kg friction free wagon, an 80kg clown catches a 15 kg cannonball traveling horizontally at 20 m/
    11·1 answer
  • If a car accelerated from 5 m/s to 25 m/s in 10 seconds what is it's acceleration?
    11·1 answer
  • Please answer this I'm sorry for annoying you
    7·1 answer
  • Which unit abbreviation is a measurement of force?
    11·1 answer
  • Which of the following is a science?
    8·1 answer
  • Two boys are at the top of a waterslide at Seven Peaks Water Park. One boy (boy A) slips off the top of the tower and falls unob
    7·1 answer
  • HELP PLEASE TY!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!