Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Answer:
The distance that the honey flowed would be the dependent or outcome variable and the temperature of the honey would be the independent variable.
The dependent variable is what is being measured in an experiment. You can remember it by thinking “it depends on what you’re changing.”
The independent variable in an experiment is what is being changed. You can remember this by thinking “the Independent variable is what I as the scientist change.”
Explanation:
mark me brainliest plz
Answer:
-1m/s
Explanation:
We can calculate the speed of block A after collision
According to collision theory:
MaVa+MbVb = MaVa+MbVb (after collision)
Substitute the given values
5(3)+10(0) = 5Va+10(2)
15+0 = 5Va + 20
5Va = 15-20
5Va = -5
Va = -5/5
Va = -1m/s
Hence the velocity of ball A after collision is -1m/s
Note that the velocity of block B is zero before collision since it is stationary
Answer:
yes it is essential
Explanation:
a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit; controls current flow into a circuit