Answer:
22600 cm³ (3 s.f.)
Explanation:
Please see the attached picture for the full solution.
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed,
rev/sec
rad/sec
= 5.89 rad/sec
Therefore, force required,

= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J
Explanation:
C,
.hahxxjdndjdndjgfndkndidjdodnxondos
The central force acting on the electron as it revolves in a circular orbit is
.
The given parameters;
- <em>speed of electron, v = 2.2 x 10⁶ m/s</em>
- <em>radius of the circle, r = 4.63 x 10⁻¹¹ m</em>
<em />
The central force acting on the electron as it revolves in a circular orbit is calculated as follows;

where;
is mass of electron = 9.11 x 10⁻³¹ kg

Thus, the central force acting on the electron as it revolves in a circular orbit is
.
Learn more about centripetal force here:brainly.com/question/20905151
Answer:
0.02 m/s^2
Explanation:
change in velocity= 4.5m/s - 2.3m/s = 2.2 m/s
acceleration= change in velocity/change in time
acceleration= 2.2/120= 0.0183
= 0.02 (to 2 significant figures)