The answer is 80 arc cb has the same measures as the central angle
Answer:
<em>t = -1.1</em>
Step-by-step explanation:
3.1 - 1.3 = t + 2.9
1.8 = t + 2.9
-1.1 = t
t = -1.1
Answer:
A) sin θ = 3/5
B) tan θ = 3/4
C) csc θ = 5/3
D) sec θ = 5/4
E) cot θ = 4/3
Step-by-step explanation:
We are told that cos θ = 4/5
That θ is the acute angle of a right angle triangle.
To find the remaining trigonometric functions for angle θ, we need to find the 3rd side of the triangle.
Now, the identity cos θ means adjacent/hypotenuse.
Thus, adjacent side = 4
Hypotenuse = 5
Using pythagoras theorem, we can find the third side which is called opposite;
Opposite = √(5² - 4²)
Opposite = √(25 - 16)
Opposite = √9
Opposite = 3
A) sin θ
Trigonometric ratio for sin θ is opposite/hypotenuse. Thus;
sin θ = 3/5
B) tan θ
Trigonometric ratio for tan θ is opposite/adjacent. Thus;
tan θ = 3/4
C) csc θ
Trigonometric ratio for csc θ is 1/sin θ. Thus;
csc θ = 1/(3/5)
csc θ = 5/3
D) sec θ
Trigonometric ratio for sec θ is 1/cos θ. Thus;
sec θ = 1/(4/5)
sec θ = 5/4
E) cot θ
Trigonometric ratio for cot θ is 1/tan θ. Thus;
cot θ = 1/(3/4)
cot θ = 4/3
For this case we first define the variable:
x = number of terms.
The equation that models the problem is:
f (x) = 3.4 - 0.6x
We have then that the first four terms are:
x = 1
f (1) = 3.4 - 0.6 (1) = 3.4 - 0.6 = 2.8
x = 2
f (2) = 3.4 - 0.6 (2) = 3.4 - 1.2 = 2.2
x = 3
f (3) = 3.4 - 0.6 (3) = 3.4 - 1.8 = 1.6
x = 4
f (4) = 3.4 - 0.6 (4) = 3.4 - 2.4 = 1
Answer:
The rule for the sequence is:
f (x) = 3.4 - 0.6x
option 1
Answer: Choice C. 
============================================
Explanation:
The domain is the set of all allowed x inputs.
Here we see that x = -3 is the smallest x value possible as it is from the left-most point. The graph goes on forever to the right, so there is no largest x value. Effectively infinity is the largest x value even though infinity is not a number.
We can say the domain is
which can be simplified to
or 
In short: x can be -3 or larger.