The volume of N₂ at STP=56 L
<h3>Further explanation</h3>
Given
2.5 moles of N₂
Required
The volume of the gas
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, the volume per mole of gas or the molar volume-Vm is 22.4 liters/mol.
So for 2.5 moles gas :

Answer:
B. gas state at room temperature
Explanation:
Explanation:
Expression for the kinetic energy is as follows.
K.E =
Now, total kinetic energy will be as follows.
K.E =
=
Since, this energy converts into electromagnetic radiation of wavelength 121.6 nm.
Relation between energy and photon is as follows.
Energy of photon =
=
=
v =
=
m/s
Thus, we can conclude that atoms were moving at a speed of
m/s before the collision.
Answer:
Explanation:
The formula relating the mass m of a sample and the heat q to vaporize it is
q = mL, where L is the latent heat of vaporization.

Hard question thx for the points