Answer:
The crop yield increased by 9 pounds per acre from year 1 to year 10.
Step-by-step explanation:
To solve this we are using the average rate of change formula:
, where:
is the second point in the function
is the first point in the function
is the function evaluated at the second point
is the function evaluated at the first point
We know that the first point is 1 year and the second point is 10 years, so
and
. Replacing values:
![Av=\frac{-(10)^2+20(10)+50-[-(1)^2+20(1)+50]}{10-1}](https://tex.z-dn.net/?f=Av%3D%5Cfrac%7B-%2810%29%5E2%2B20%2810%29%2B50-%5B-%281%29%5E2%2B20%281%29%2B50%5D%7D%7B10-1%7D)
![Av=\frac{-100+200+50-[-1+20+50]}{9}](https://tex.z-dn.net/?f=Av%3D%5Cfrac%7B-100%2B200%2B50-%5B-1%2B20%2B50%5D%7D%7B9%7D)
![Av=\frac{150-[69]}{9}](https://tex.z-dn.net/?f=Av%3D%5Cfrac%7B150-%5B69%5D%7D%7B9%7D)



Since
represents the number of pounds per acre and
the number of years, we can conclude that the crop yield increased by 9 pounds per acre from year 1 to year 10.
Answer:
22.4
Step-by-step explanation:
using altitude theorem, the height of the triangle is 20
let y = height
10/y = y/40
y² = 400
y =
or 20
Now we can us the Pythagorean Theorem to find 'x':
10² + 20² = x²
100 + 400 = x²
x=
≈ 22.4
Add e to both sides and subtract 2 from both sides :: v+f-2=e
Answer:
(√366 - 3)/24
Step-by-step explanation:
Given the following:
cos∝ = √3/8 and sinβ = √3/3
Sin(∝-β) = sin∝cosβ - cos∝sinβ
Get sin∝
Since cos∝ = √3/8
adj = √3
hyp = 8
opp = √8² - (√3)²
opp = √64 - 3
opp = √61
Recall that sin∝ = opp/hyp
sin∝ = √61/8
Get cosβ
Since sinβ = √3/3
opp = √3
hyp = 3
adj =√3² - (√3)²
adj = √9-3
adj = √6
Recall that cosβ = adj/hyp
cosβ = √6/3
Substitute the gotten values into the formula
Sin(∝-β) = sin∝cosβ - cos∝sinβ
Sin(∝-β) = ( √61/8)(√6/3)- (√3/8)(√3/3)
Sin(∝-β) = √366/24 - √9/24
Sin(∝-β) = (√366 - 3)/24