The number of collison is independent of volume
The octet rule is a chemical rule of thumb that reflects observation that atoms of main-group elements tend to combine in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens, but also to metals such as sodium or magnesium.
The valence electrons can be counted using a Lewis electron dot diagram as shown at the right for carbon dioxide. The electrons shared by the two atoms in a covalent bond are counted twice, once for each atom. In carbon dioxide each oxygen shares four electrons with the central carbon, two (shown in red) from the oxygen itself and two (shown in black) from the carbon. All four of these electrons are counted in both the carbon octet and the oxygen octet.
Volume = nRT/P
n = number of particles (moles)
R = universal gas constant (0.0821)
T = temperature (Kelvin)
P = pressure (atm)
(Assuming you have 1 mole of Helium in a chemical reaction) We would need to convert grams to moles: 12.0g He x 1 mol He/4 molar mass of He = 3 mol He
Convert Celsius to Kelvin: 100*C + 273.15 = 373.15 K
Now we can set up the equation for volume: (3mol)(0.0821)(373.15)/1.2atm = 76.6 L of Helium gas
Answer:
The classification is mentioned below for the particular topic.
Explanation:
- Whether we position 2 different beakers in such a single beaker through one clean edge of zinc-containing H₃Po₄ and another one with unflushed zinc.
- The zinc that was washed set to release hydrogen gas way quicker, unlike unventilated zinc.
⇒ 
- Since fresh zinc complicates the cycle since, as a comparison to polluted zinc, there was little contact with either the reaction.
Im not positive but i think it is When it is a gas?