Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
Answer : The labs were unable to reproduce the pharmaceutical company’s data.
Explanation : Any scientific claim must have reproducible experimental data. In this case, when the pharmaceutical company has the claim of reducing the cancer growth cells by 35% then by using the same manufacturing procedure for the drug and lab should be able to get this result. But they failed to match up with the results which clearly indicates that the labs were not able to produce the same results and hence they concluded that the pharmaceutical company's claims were invalid.
Answer:
The atom will have a negative charge.
Explanation:
Electrons are subatomic particles with a negative charge, protons are subatomic particles with a negative charge, and neutrons have no charge. When a neutral atom's balance is disrupted by an extra electron, the atom becomes negatively charged.