Answer:
m = 3 kg
The mass m is 3 kg
Explanation:
From the equations of motion;
s = 0.5(u+v)t
Making t thr subject of formula;
t = 2s/(u+v)
t = time taken
s = distance travelled during deceleration = 62.5 m
u = initial speed = 25 m/s
v = final velocity = 0
Substituting the given values;
t = (2×62.5)/(25+0)
t = 5
Since, t = 5 the acceleration during this period is;
acceleration a = ∆v/t = (v-u)/t
a = (25)/5
a = 5 m/s^2
Force F = mass × acceleration
F = ma
Making m the subject of formula;
m = F/a
net force F = 15.0N
Substituting the values
m = 15/5
m = 3 kg
The mass m is 3 kg
Answer:
The order of increasing energy is as follows
"microwave < infrared < visible < ultraviolet"
Option (A) is correct.
Explanation:
Given:
Arrange the following spectral regions in order of increasing energy: infrared, microwave, ultraviolet, visible.
From the formula of energy in terms of frequency.

Where
planck constant,
frequency of light.
From above formula we can conclude that higher frequency means higher energy.
In our case ultraviolet has higher frequency and microwave has lower frequency.
So ultraviolet has higher energy and microwave has lower energy.
microwave < infrared < visible < ultraviolet
Therefore, the order of increasing energy is as follows
"microwave < infrared < visible < ultraviolet"
The PE for this question will be 588,000 because we take the mass (2,000 kg), multiply it by 9.8 which is Gravitational Acceleration and then multiply that by the height (30 meters)
Same temperature and difference in air pressure