The important point here is that volumetric flow rate in the pump and the pipe is the same.
Q = AV, where Q = Volumetric flow rate, A = Cross sectional area, V = velocity
Q (pump) = (π*15^2)/4*2 = 353.43 cm^3/s
Q (pipe) = (π*(3/10)^2)/4*V = 0.071V
Q (pump) = Q (pipe)
0.071V = 353.43 => V = 5000 cm/s
Therefore, the flow of water in the pipe is 5000 cm/s.
Answer: MA= Radius of wheel divided by Radius of Axle
Explanation:
Answer:
It's a pretty simple suvat linear projectile motion question, using the following equation and plugging in your values it's a pretty trivial calculation.
V^2=U^2+2*a*x
V=0 (as it is at max height)
U=30ms^-1 (initial speed)
a=-g /-9.8ms^-2 (as it is moving against gravity)
x is the variable you want to calculate (height)
0=30^2+2*(-9.8)*x
x=-30^2/2*-9.8
x=45.92m
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
Answer:
The correct answer is B)
Explanation:
When a wheel rotates without sliding, the straight-line distance covered by the wheel's center-of-mass is exactly equal to the rotational distance covered by a point on the edge of the wheel. So given that the distances and times are same, the translational speed of the center of the wheel amounts to or becomes the same as the rotational speed of a point on the edge of the wheel.
The formula for calculating the velocity of a point on the edge of the wheel is given as
= 2π r / T
Where
π is Pi which mathematically is approximately 3.14159
T is period of time
Vr is Velocity of the point on the edge of the wheel
The answer is left in Meters/Seconds so we will work with our information as is given in the question.
Vr = (2 x 3.14159 x 1.94m)/2.26
Vr = 12.1893692/2.26
Vr = 5.39352619469
Which is approximately 5.39
Cheers!