Answer: C
Period/ Period of the pendulum.
Content:
Simple pendulum is a small diameter bob which is suspended from light cord or string. The string is strong enough to stretch.
Pendulums are quiet common in use such as clocks, swings etc.,
From the simple pendulum we can find conditions under which it performs simple harmonic motion and we can also derive the expressions for Period of pendulum, frequency etc.
<em>Period of a pendulum/Time period is given by the following expression</em>
<em> </em><em> T =2π.√(L/g) seconds </em>
<em> </em><em>T = period of pendulum in seconds</em>
<em> L = Length of the string/cord in meters</em>
<em> g = gravitational force in m/s² ( g = 9.8 m/s² )</em>
<em>Period of pendulum is independent on mass of the bob.</em>
<em>So, The relation between length of the cord and gravity is used to determine the period of pendulum</em>
Answer:
Explanation:
A physical property is a characteristic of matter that is not associated with a change in its chemical composition. Familiar examples of physical properties include density, color, hardness, melting and boiling points, and electrical conductivity.
I think it’s answer 1 to separate senators fr om the whims or the general public
Answer:
160 m/s
Explanation:
The Ferrari is moving by uniformly accelerated motion, with constant acceleration of a = 50 m/s^2, and initial velocity u = 10 m/s. The velocity at time t of the car is given by

where
u = 10 m/s
a = 50 m/s^2
If we substitute t = 3 s into the equation, we can find the velocity of the car after 3 seconds:

That is not yet possible. that technology has not yet been invented.