Hello =D
This problem is about cinematic
So
V = 45 mi/h
t = 2 h
Then
V= X/t
X = V*t
Then
X = (45)*(2)
X = 90 mi
Best regards
Answer:
Explanation:
potential energy of compressed spring
= 1/2 k d²
= 1/2 x 730 d²
= 365 d²
This energy will be given to block of mass of 1.2 kg in the form of kinetic energy .
Kinetic energy after crossing the rough patch
= 1/2 x 1.2 x 2.3²
= 3.174 J
Loss of energy
= 365 d² - 3.174
This loss is due to negative work done by frictional force
work done by friction = friction force x width of patch
= μmg d , μ = coefficient of friction , m is mass of block , d is width of patch
= .44 x 1.2 x 9.8 x .05
= .2587 J
365 d² - 3.174 = .2587
365 d² = 3.4327
d² = 3.4327 / 365
= .0094
d = .097 m
= 9.7 cm
If friction increases , loss of energy increases . so to achieve same kinetic energy , d will have to be increased so that initial energy increases so compensate increased loss .
Answer:
it floats because the lake is cold at that moment so when part of the lake freezes it still remains solid and floats because of the lake and the surrounding of the lake is still cold
Answer:
Magnitude of induced emf is 0.00635 V
Explanation:
Radius of circular loop r = 45 mm = 0.045 m
Area of circular loop 

Magnetic field is increases from 250 mT to 350 mT
Therefore change in magnetic field 
Emf induced is given by


Magnitude of induced emf is equal to 0.00635 V