1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina [24]
3 years ago
10

A runner starts from rest, runs for 30

Physics
1 answer:
aleksklad [387]3 years ago
6 0

Answer:

u=0

t=30s

a=2m/s²

v=?

v= u+at

= 0+(30)(2)

= 60m/s

You might be interested in
A world-class sprinter running a 100 m dash was clocked at 5.4 m/s 1.0 s after starting running and at 9.8 m/s 1.5 s later. In w
cupoosta [38]

Answer:

<em>The output power is greater in the interval from 1.0 s to 2.5 s</em>

Explanation:

<u>Physical Power </u>

It measures the amount of work W an object does in certain time t. The formula needed to compute power is

\displaystyle P=\frac{W}{t}

Work can be computed in several ways since we are given the motion conditions, we'll use this formula, for F= applied force, x=distance parallel to F

W=F.x

The second Newton's law gives us the net force as

F=m.a

being m the mass of the object and a the acceleration it has for a given period of time. In our problem, we have two different behaviors for each interval and we must calculate this force since the acceleration is changing. Let's calculate the acceleration in the first interval. We can use the formula for the final speed vf knowing the initial speed vo (which is 0 because the sprinter starts from rest), the acceleration a, and the time t:

v_f=v_o+at

v_f=at

Solving for a

\displaystyle a=\frac{v_f}{t}={5.4}{1}

a=5.4\ m/s^2

The distance traveled in the interval is given by

\displaystyle x=v_o.t+\frac{a.t^2}{2}

Since vo=0

\displaystyle x=\frac{a.t^2}{2}=\frac{5.4(1)^2}{2}

x=2.7\ m

The force is given by

F=m.a

We don't know the value of m, so the force is

F=2.7m

Computing the work done by the sprinter

W=F.x=2.7m(5.4)

W=14.58m

The power is finally computed

\displaystyle P=\frac{W}{t}=\frac{14.58m}{1}

P=14.58m

During the second interval, from t=1 sec to 1.5 sec, the speed changes from 5.4 m/s to 9.8 m/s. This allows us to compute the second acceleration

\displaystyle a=\frac{v_f-v_o}{t}=\frac{9.8-5.4}{0.5}

a=8.8\ m/s^2

The distance is

\displaystyle x=(5.4).(0.5)+\frac{8.8(0.5)^2}{2}

x=3.8\ m

The net force is

F=m(8.8)=8.8m

The work done by the sprinter is now computed as

W=8.8m(3.8)=33.44m

At last, the output power is

\displaystyle P=\frac{33.44m}{0.5}=66.88m

By comparing both results, and being m the same for both parts, we conclude the output power is greater in the interval from 1.0 s to 2.5 s

6 0
3 years ago
A 12-kg piece of metal displaces 1.6 L of water when submerged. Part A Find its density. Express your answer to two significant
Tatiana [17]

Answer:

ρ = 7500 kg/m³

Explanation:

Given that

mass ,m = 12 kg

Displace volume ,V= 1.6 L

We know that

1000 m ³ = 1 L

Therefore V= 0.0016 m ³

When metal piece is fully submerged

We know that

mass = Density x volume

m=\rho \times V

Now by putting the values in the above equation

\rho=\dfrac{12}{0.0016}\ kg/m^3

ρ = 7500 kg/m³

Therefore the density of the metal piece will be  7500 kg/m³.

6 0
3 years ago
What is energy?
mestny [16]

Answer:

Energy is the ability for an object to do work.

Kinetic energy is energy which a body possesses while in motion.

Stored Energy = Potential Energy.

Speed is a measurement of how quickly something is able to move or operate.

6 0
3 years ago
What is the magnitude of the momentum change of two gallons of water (inertia about 7.3 kg ) as it comes to a stop in a bathtub
aliya0001 [1]

We know that the change in momentum is equals to the product of force and time that is impulse (  F \times t). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,

s=ut+\frac{1}{2} gt^2

Here, u is initial velocity which is zero.

s= \frac{1}{2} gt^2 \\\\ t = \sqrt{\frac{2s}{g} }.

Thus, impulse

= F \times \sqrt{\frac{2s}{g} }

From Newton`s second law,

F =mg

Therefore, impulse

= mg \times \sqrt{\frac{2s}{g} } = m \sqrt{2gs}

Given,  m = 7.3 kg and s = 2.0 m

Substituting these values, we get

Change in momentum = impulse  

= 7.3 \ kg \sqrt{2 \times 9.8 \ m/s^2 \times 2.0 \ m } = 45 .7 \ Ns.

8 0
3 years ago
Which of the following could you do to increase the strength of an electromagnet?
Ann [662]
Wrap around a metal with wire instead of using wire alone.
8 0
3 years ago
Other questions:
  • You compress a spring by a distance of 0.2 m. The spring has a spring constant of 37 N/m. When you release the spring, it snaps
    8·2 answers
  • If we approximate the rack to be completely flat and the racecar is travelling a constant 30.5 m/s around the turn, what forces
    14·1 answer
  • 1. Part A
    10·1 answer
  • 2
    15·2 answers
  • What is the mass of a substance with a density of 9g/cm3 and a volume of 4cm3
    11·1 answer
  • Someone help please i need to finish this
    13·1 answer
  • 1. You walk along a long straight school corridor for 55
    9·1 answer
  • A boat is traveling upstream at 14 km/h with respect to the water of a river. The water itself is flowing at 9 km/h with respect
    5·1 answer
  • If you have a mass of 30 kilograms and you are resting on top of a hill that is 20 meters high how much energy would you have.
    7·1 answer
  • A space shuttle does one full orbit every 90 minutes. The radius of Earth including the shuttle's orbit is
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!