Answer:
1.08 s
Explanation:
From the question given above, the following data were obtained:
Height (h) reached = 1.45 m
Time of flight (T) =?
Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:
Height (h) = 1.45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1.45 = ½ × 9.8 × t²
1.45 = 4.9 × t²
Divide both side by 4.9
t² = 1.45/4.9
Take the square root of both side
t = √(1.45/4.9)
t = 0.54 s
Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).
Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:
Time (t) taken to reach the height = 0.54 s
Time of flight (T) =?
T = 2t
T = 2 × 0.54
T = 1.08 s
Therefore, it will take the kangaroo 1.08 s to return to the earth.
The speed of the ball moving is

what is momentum?
The momentum p of a classical object of mass m and velocity v is given by pclassical =mv.
For photons with wavelength λ,this equation does not hold.Instead, the momentum of the Photon is given by p Photon = h/λ
where,h is the planck's constant.
The momentum of the red Photon is
given:




since,the Photon and the ping-pong ball have the same momentum,we have



Therefore, if the red photon and the ping-pong ball have the same momentum, the ping-pong ball must have a speed of approximately

learn more about momentum of photon from here: brainly.com/question/28197406
#SPJ4
Average speed = distance / time
Average speed = 90 km / 0.5 hrs
Average speed = 180 km per hour
Along plate edges, at points where oceanic or continental plates meet ot at the edges of the plates
Answer:
Explanation:
I got everything but i. Don't know why but it's eluding me. So let's do everything but that.
a. PE = mgh so
PE = (2.5)(98)(14) and
PE = 340 J
b.
so
and
KE = 250 J
c. TE = KE + PE so
TE = 340 + 250 and
TE = 590 J
d. PE at 8.7 m:
PE = (2.5)(9.8)(8.7) and
PE = 210 J
e. The KE at the same height:
TE = KE + PE and
590 = KE + 210 so
KE = 380 J
f. The velocity at that height:
and
so
v = 17 m/s
g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:
590 = KE + PE and
PE = (2.5)(9.8)(11.6) so
PE = 280 then
590 = KE + 280 so
KE = 310 then
and
so
v = 16 m/s
h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:
and
26 = 0 + 9.8t and
26 = 9.8t so the time at 26 m/s is
t = 2.7 seconds. Now we use that in the equation for displacement:
Δx =
and filling in the time the object was at 26 m/s:
Δx = 0t +
so
Δx = 36 m
i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.