Answer: gases
Explanation: because gases move around freely and they would be the only one to make sense because solid are compacted together and liquid are not so fast at moving but gases are wild
dont use this this is a bad explanation
In order to decrease the friction on the slide,
we could try some of these:
-- Install a drippy pipe across the top that keeps continuously
dripping olive oil on the top end of the slide. The oil oozes
down the slide and keeps the whole slide greased.
-- Hire a man to spread a coat of butter on the whole slide,
every 30 minutes.
-- Spray the whole slide with soapy sudsy water, every 30 minutes.
-- Drill a million holes in the slide,and pump high-pressure air
through the holes. Make the slide like an air hockey table.
-- Keep the slide very cold, and keep spraying it with a fine mist
of water. The water freezes, and a thin coating of ice stays on
the slide.
-- Ask a local auto mechanic to please, every time he changes
the oil in somebody's car, to keep all the old oil, and once a week
to bring his old oil to the park, to spread on the slide. If it keeps
the inside of a hot car engine slippery, it should do a great job
keeping a simple park slide slippery.
-- Keep a thousand pairs of teflon pants near the bottom of the ladder
at the beginning of the slide. Anybody who wants to slide faster can
borrow a set of teflon pants, put them on before he uses the slide, and
return them when he's ready to go home from the park.
Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
Answer:
Power will be 0.2023 watt
And when amplitude is halved then power will be 0.0505 watt
Explanation:
We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg
Length of wire l = 84 cm = 0.84 m
So mass density 
Tension in the wire T = 25 N
Frequency f = 120 Hz
So angular frequency 
And amplitude A = 1.6 mm = 0.0016 m
We have to find the generated power
Power is given by 
From the relation we can see that power 
So if amplitude is halved then power will be
times
So power will be equal to 