Answer:
- Decreasing the resistance
- Using a shorter length
- Using a smaller area wire
Explanation:
Formula for conductance in wires is;
G = 1/R
Where;
G is conductance
R is resistance
This means that increasing the resistance leads to a larger denominator and thus a smaller conductance but to decrease the denominator means larger conductance.
Thus, to increase the conductance, we have to decrease the resistance.
Resistance here has a formula of;
R = ρL/A
Where;
ρ is resistivity
L is length of wire
A is area
Thus, to decrease the resistance, we will have to use a shorter length and smaller area of wire.
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 
A) 1.55
The speed of light in a medium is given by:

where
is the speed of light in a vacuum
n is the refractive index of the material
In this problem, the speed of light in quartz is

So we can re-arrange the previous formula to find n, the index of refraction of quartz:

B) 550.3 nm
The relationship between the wavelength of the light in air and in quartz is

where
is the wavelenght in quartz
is the wavelength in air
n is the refractive index
For the light in this problem, we have

Therefore, we can re-arrange the equation to find
, the wavelength in air:
