1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
15

An open container holds ice of mass 0.500 kgkg at a temperature of -17.4 âCâC . The mass of the container can be ignored. Heat i

s supplied to the container at the constant rate of 710 J/minuteJ/minute . The specific heat of ice to is 2100 J/kgâKJ/kgâK and the heat of fusion for ice is 334Ã103J/kg3.How much time tmelts passes before the ice starts to melt?From the time when the heating begins, how much time trise does it take before the temperature begins to rise above 0âC?
Physics
2 answers:
MaRussiya [10]3 years ago
6 0

Answer:

a) t = 235.2minute

b) 260.94minutes

Explanation:

Heat energy is defined as the energy required to change the temperature of a substance by 1kelvin.

It is expressed as H = mc∆t where m is the mass of the water

c is the specific heat capacity of the water/ice

∆t is the change in temperature

Total heat required to melt the ice

H = mLice + mc∆t

Lice is the latent heat of fusion of ice

a) To calculate how much time tmelts passes before the ice starts to melt, we will only calculate heat energy absorb by the ice before it melts.

H = mLice

H = 0.50(334000)

H = 167,000Joules

If heat is supplied to the container at the constant rate of 710 J/minute, the time taken before the ice starts to melt will be:

t = 167,000/710

t = 235.2minutes

b) To calculate how much time trise does it take before the temperature begins to rise above 0°C, we will calculate the total energy absorbed at 0°C first.

H = 0.50(334000) + 0.50(2100)(0-(-17.4)

Note that the ice melts at 0°C which will be the final temperature

H = 167,000+18270

H = 185,270oules

Since heat is supplied to the container at the constant rate of 710 J/minute

710Joules = 1minute

185,270Joules= x

x = 185,270/710

x = 260.94minutes

The time taken before the temperature begins to rise is 260.94minutes:

aivan3 [116]3 years ago
6 0

Answer:

It takes 25.73 minutes before the ice starts to melt, and it takes 235.21 minutes (about 3.9 hours) before the temperature of ice begins to rise above 0°C.

Explanation:

First, we need to know how much heat is required to rise the temperature of ice to 0°C. To do that, we use the following equation (using the equivalence -17.4°C≈255.6°K and 0°C≈273°K):

Q=mc\Delta T\\\\Q=(0.500kg)(2100J/kg\°K)(273\°K-255.6\°K)\\\\Q=18270J

So are needed 18,720 Joules of heat. Since there is supplied heat at a constant rate of 710 J/min, we can get the time t_{melts} that passes before the ice startes to melt from the equation:

v=\frac{Q}{t_{melts}}\\ \\t_{melts}=\frac{Q}{v}\\\\t_{melts}=\frac{18720J}{710J/min}\\\\t_{melts}=25.73min

Then, it passes 25.73 minutes before the ice starts to melt.

Now, we do the same to get the time it takes before the temperature begins to rise above 0°C t_{rise}:

Q=mL_f\\\\Q=(0.500kg)(334*10^{3}J/kg)\\\\Q=167000J

Then, are needed 167,000 Joules of heat to completely melt ice. Since a substance in a phase change does not change its temperature, when ice receives this amount of heat then it starts to rise its temperature above 0°C. So, the time t_{rise} is obtained by:

t_{rise}=\frac{Q}{v}\\\\t_{rise}=\frac{167000J}{710J/min}\\\\t_{rise}=235.21 min

Finally, it passes 235.21 minutes (about 3.9 hours) before the temperature of ice begins to rise above 0°C.

You might be interested in
Why does the density of a substance remain the same for different amount of the substance
tresset_1 [31]

Think of it this way: 
-- Any time you have something that means (some number) PER UNIT,
it doesn't matter how many units there are on the table or in the bucket,
because that amount doesn't change the (number) PER UNIT.

-- If oranges cost $1 PER POUND, it doesn't matter how many pounds
you buy, the whole bagful is still $1 PER POUND.

-- If a certain salad dressing has 40 calories PER Tablespoon, it doesn't
matter whether you eat a drop of it or drink the whole jar.  You still get
40 calories PER Tablespoon.

-- Density means '(mass) PER unit of volume'.  Whether you have a tiny
chip of the substance or a whole truckload of it, there's still the same
amount of mass IN EACH unit of volume.

6 0
3 years ago
An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,
insens350 [35]

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

8 0
3 years ago
6 use superposition to find voltage v(t) across the 100 ohm resistor
Vinvika [58]
It'll be my pleasure to analyze the circuit, describe my analysis in detail,
and give you a clear, precise, and accurate answer.

As soon as you let me see the circuit diagram, with values marked on
all of its components and power sources.
6 0
3 years ago
A girl weighing 50 kgf wears sandals of pencil heel of area of cross section 1 cm^2, stands on the floor.An elephant weighing 20
Klio2033 [76]

Answer:

\boxed{{\boxed{\blue{ 12.5}}}}

Explanation:

Given, for girl : Weight or force;

\rm \: F_1 = 50 \: kgf

Area of both heels;

\rm \: A_1 =  \; 2 ×1 \;  cm^2 = 2  \: cm^2

\rm \: Pressure \:  P_1  =  \cfrac{F_1}{ A_1 }  =  \dfrac{50 \: kgf}{2 \: cm {}^{2} }  = 25 \: kgf \: cm {}^{ - 1}

For elephant, Weight = Force \rm F_2 = 2000 kg•f

Area of 4 feet;

\rm \: A_2  = \; 4 \times 250 \;  cm^2 = 1000 \:  cm^2

\rm \: Pressure \:  P_2 = {F_2}/{A_2} \;  = \cfrac{2 \cancel{0 00 }\:  kgf}{1 \cancel{000} \: cm^2} =  2 \: kgf \: { \:cm}^{- 1}

Now;

\rm  = \dfrac{Pressure \:  Exerted  \: by  \: the \:  Girl}{Pressure  \: exerted  \: by \:  the  \: elephant}

=  \rm \: P_1/P_2

\implies    \rm\cfrac{25 \: kgf \: \: cm {}^{ - 2} }{2 \: kgf \: cm {}^{ - 2} } =  \rm\cfrac{25 \:  \cancel{kgf \: \: cm {}^{ - 2}} }{2 \: \cancel{ kgf \: cm {}^{ - 2}} } = \boxed{12.5}

Thus, the girl's pointed heel sandals exert 12.5 times more pressure P than the pressure P exerted by the elephant.

I aspire this helps!

3 0
2 years ago
How is the q of an rlc parallel resonant circuit calculated?
notka56 [123]

Answer:

It is calculated by dividing Resistance, R, by Inductive reactance, XL.

Explanation:

Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.

Q factor is the inverse in the resonance series circuit.

Q factor of a resonance parallel circuit,

<h3>Q = R/XL</h3>

R = Resistance

XL = Inductive reactance

3 0
3 years ago
Other questions:
  • Matt, Erin, and Lauren were having a challenge to see who could dissolve a one-pound cube of sugar the quickest.
    12·1 answer
  • Hi! Can you help me? :) A satellite's speed is 10,000 m/s. After 1 min, it is 5,000 m/s. What is the satellite's acceleration? T
    11·2 answers
  • As matter changes state from gas to liquid, which of these statements is true?
    6·1 answer
  • A cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains 0.1
    11·1 answer
  • Do your relationships tend to have this quality?
    7·2 answers
  • How can you protect yourself from the Virus?
    5·2 answers
  • A 80 mW laser beam is polarized horizontally. It then passes through two polarizers. The axis of the first polarizer is oriented
    12·1 answer
  • Does a falling rock have potential or kinetic energy
    13·2 answers
  • Have thick walls<br>Chamaer o the heart<br>which​
    14·1 answer
  • What does the term "speed" describe?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!