Answer: I feel that 3 is the answer
Explanation: Let there be 2 objects, A and B
A is at height of 5m whereas B is at height of 15m
so over here let the gravitational potential energy of A be x
and since B is 3 times higher than A B=3x
Since, earth is considered to be the point where gravitational potenial is 0
So hence forth and object 3 times up will have 3 times the gravitational potential energy of A
Answer:
Explanation:
The question relates to time of flight of a projectile .
Time of flight = 2 u sinθ / g
u is speed of projectile , θ is angle of projectile
= 2 x 48.5 sin42 / 9.8
= 6.6 seconds .
Maximum height attained
= u² sin²θ / g
= 48.5² sin²42 / 9.8
= 107.47 m .
Answer:
78.4 m
Explanation:
Using newton's equation of motion,
S = ut + 1/2gt²......................... Equation 1
Where S = Height, t = time, u = initial velocity, g = acceleration due to gravity.
Note: Taking upward to be negative, and down ward positive
Given: u = 49 m/s, t = 2.0 s, g = -9.8 m/s²
Substitute into equation 1
S = 49(2) - 1/2(9.8)(2)²
S = 98 - 19.6
S = 78.4 m
Hence the height of the ball two seconds later = 78.4 m
Density depends on mass and volume so option D is correct answer. Hope this helps!
Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.