Answer:
M = I A definition of magnetic moment - current * area
A = π R^2 = π * (6.4E6)^2 = 1.3E14 m^2
I = 8E22 A-m^2 / 1.3E14 m^2 = 6.2E8 amperes
I = 620,000,000 amps
Answer:
C. hyperbola
Explanation:
From Boyle's law:
PV = k, where k is a constant
Solving for P:
P = k / V
At first glance, this equation doesn't fit any of the options. But when you graph it, you can see that it's actually a <em>rotated</em> hyperbola.
Answer:
Wind the long piece of thin wire around the uniform glass rod multiple times, find the length of the total diameters using the metre ruler, and divide by the number of times you wound it around the rod.
Explanation:
Since the diameter of one long piece of thin wire is too thin to be measured by a metre ruler, you can wind it multiple times and push it side by side to get a length you can measure.
For example, if you wound it around 20 times and the total length of 20 diameters of the wire side-by-side is 2.0 cm, one winding, which is the diameter would be 2.0cm ÷ 20 = 0.10cm or 1mm.
we know that the sun is supported by nuclear fusion because the sun is a main-sequence star, meaning it has to use nuclear fusion to keep itself going, no nuclear fusion, no sun.
i hope this helps!
Answer:
The normal force the seat exerted on the driver is 125 N.
Explanation:
Given;
mass of the car, m = 2000 kg
speed of the car, u = 100 km/h = 27.78 m/s
radius of curvature of the hill, r = 100 m
mass of the driver, = 60 kg
The centripetal force of the driver at top of the hill is given as;

where;
Fc is the centripetal force
is downward force due to weight of the driver
is upward or normal force on the drive

Therefore, the normal force the seat exerted on the driver is 125 N.