Given:
(Initial velocity)u=20 m/s
At the maximum height the final velocity of the ball is 0.
Also since it is a free falling object the acceleration acting on the ball is due to gravity g.
Thus a=- 9.8 m/s^2
Now consider the equation
v^2-u^2= 2as
Where v is the final velocity which is measured in m/s
Where u is the initial velocity which is measured in m/s
a is the acceleration due to gravity measured in m/s^2
s is the displacement of the ball in this case it is the maximum height attained by the ball which is measured in m.
Substituting the given values in the above formula we get
0-(20x20)= 2 x- 9.8 x s
s= 400/19.6= 20.41m
Thus the maximum height attained is 20.41 m by the ball
Answer:
A : hot and moist, maritime tropical
B: cold and dry, maritime polar
C: hot and moist , maritime tropical
D: cold and dry, continental polar
E: hot and moist , maritime tropical
F: cold and dry , maritime polar
Explanation:
Cold air is denser than warm air. The more water vapor that is in the air, the less dense the air becomes. That is why cold, dry air is much heavier than warm, humid air.
Maritime polar (mP) air masses are cool, moist, and unstable. Some maritime polar air masses originate as continental polar air masses over Asia and move westward over the Pacific, collecting warmth and moisture from the ocean.
Maritime tropical (mT) air masses are warm, moist, and usually unstable.
Answer:
Explanation:Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, ... This article is about the physical phenomenon. ... If the diameter of the tube is sufficiently small, then the combination of surface tension (which is caused by cohesion ... They derived the Young–Laplace equation of capillary action.
Answer: 735 N
Explanation:
Weight
is a measure of the gravitational force acting on an object and is directly proportional to the product of the mass
of the body by the acceleration of gravity
:
In the case of our planet Earth, the acceleration due gravity is
. So for a man whose mass is
, his weight is: