155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
<span>A microcomputer that is smaller, lighter, and less powerful than a notebook, and that has a touch sensitive screen, is called a tablet. Tablets are used similarly to computers in the way that information can be stored, viewed and edited on them.</span>
Answer:
1. Our ears can sort out the individual sine waves from a mixture of two or more sine waves, so we hear the pure tones that make up a complex tone.
Explanation:
A complex tone is a sound wave that consist of two or more forms of audible sound frequencies. Sound wave is a mechanical wave that is longitudinal, and could be represented by a sine wave because of it sinusoidal manner of propagation.
A Fourier analyzer can be used to differentiate individual sine waves from a combination of two or more of it; which is as the same function performed by human ear. To the human ear, a sound wave that consist of more than one sine wave will have perceptible harmonics which would be distorted and turn to a noise.
Thus, the human ear makes it possible to hear the pure tones that make up a complex tone.