Answer:
<em>The force that would be applied on the rope just to start moving the wagon is 122 N</em>
Explanation:
Frictional force opposes motion between two surfaces in contact. It is the force that must be applied before a body starts to move. Static friction opposes the motion of two bodies that are in contact but are not moving. The magnitude of static friction to overcome for the body to move can be calculated using equation 1.
F = μ x mg .............................. 1
where F is the frictional force;
μ is the coefficient of friction ( μs, in this case, static friction);
m is mass of the object and;
g is the acceleration due to gravity( a constant equal to 9.81 m/
)
from the equation we are provide with;
μs = 0.25
m = 50 kg
g = 9.81 m/
F =?
Using equation 1
F = 0.25 x 50 kg x 9.81 m/
F = 122.63 N
<em>Therefore a force of 122 N must be applied to the rope just to start the wagon.</em>
Answer:
Ultraviolet rays from sun are very harmful from skin and can cause sunburn and skin diseases especially ultraviolet B rays.<em> A sunscreen lotion act as a protection barrier on the skin that restrict the direct contact of UV rays with skin and filter the harmful rays to enter the skin. </em>
Radiotherapy is a medical therapy use to treat cancer. <em>Radiotherapy commonly uses x-rays and gamma rays because they are high-energy particles or waves that kills or destroys the cancer cells.</em>
<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>