Answer:
acceleration 8 km/h/s south
Explanation:
First of all, let's remind that a vector quantity is a quantity which has both a magnitude and a direction.
Based on this definition, we can already rule out the following two choices:
distance: 40 km
speed: 40 km/h
Since they only have magnitude, they are not vectors.
Then, the following option:
velocity: 5 km/h north
is wrong, because the car is moving south, not north.
So, the correct choice is
acceleration 8 km/h/s south
In fact, the acceleration can be calculated as

where
v = 40 km/h is the final velocity
u = 0 is the initial velocity
t = 5 s is the time
Substituting,

And since the sign is positive, the direction is the same as the velocity (south).
<span>Examples of outside forces acting on a car is gravity, wind, and other cars. Cars do not slide down hills because their weight, combined with the friction of their tires against the road, hold them in place. </span>
Answer:
300 m/s
Explanation:
The difference in time between the two bangs is 1 s.
Thus;
t2 - t1 = 1
We know that distance/time = speed.
Thus;
d2/v - d1/v = 1
Multiply through by v to get;
d2 - d1 = v
Where v is speed of sound in air.
d1 = 350 m
d2 = (150 × 2) + 350 = 650 m
Thus;
v = d2 - d1 = 650 - 350 = 300 m/s
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer: they have the same magnitude.
Explanation:
normal force = mg
weight = mg