Either 175 N or 157 N depending upon how the value of 48° was measured from.
You didn't mention if the angle of 48° is from the lug wrench itself, or if it's from the normal to the lug wrench. So I'll solve for both cases and you'll need to select the desired answer.
Since we need a torque of 55 N·m to loosen the nut and our lug wrench is 0.47 m long, that means that we need 55 N·m / 0.47 m = 117 N of usefully applied force in order to loosen the nut. This figure will be used for both possible angles.
Ideally, the force will have a 0° degree difference from the normal and 100% of the force will be usefully applied. Any value greater than 0° will have the exerted force reduced by the cosine of the angle from the normal. Hence the term "cosine loss".
If the angle of 48° is from the normal to the lug wrench, the usefully applied power will be:
U = F*cos(48)
where
U = Useful force
F = Force applied
So solving for F and calculating gives:
U = F*cos(48)
U/cos(48) = F
117 N/0.669130606 = F
174.8537563 N = F
So 175 Newtons of force is required in this situation.
If the 48° is from the lug wrench itself, that means that the force is 90° - 48° = 42° from the normal. So doing the calculation again (this time from where we started plugging in values) we get
U/cos(42) = F
117/0.743144825 = F
157.4390294 = F
Or 157 Newtons is required for this case.
Answer:
<em>Details in the explanation</em>
Explanation:
<u>Vertical Launch</u>
When an object is thrown vertically in free air (no friction), it moves upwards at its maximum speed while the acceleration of gravity starts to brake it. At a given time and height, the object stops in mid-air and starts to fall back to the launching point until reaching it with the same speed it was launched.
We are given an expression for the height of an object in function of time t

<em>Please note we have deleted the second 'squared' from the formula since it's incorrect and won't describe the motion of vertical launch.</em>
We now have to evaluate h for the following times, assuming h comes in feet
At t=1 sec

The object is at a height of 48 feet
At t=2 sec

The object is at a height of 64 feet. This is the maximum height the object will reach, as we'll see below
At t=3 sec

The object is at a height of 48 feet. We can clearly see it's returning from the maximum height and is going down
At t=4 sec

The object is at ground level and has returned to the launch point.
1. Cold environment
2. Muscle contractions
3. shivering and goosebumps
4 Increase body temperature
Answer:
C
Explanation:
To solve this question, we will need to develop an expression that relates the diameter 'd', at temperature T equals the original diameter d₀ (at 0 degrees) plus the change in diameter from the temperature increase ( ΔT = T):
d = d₀ + d₀αT
for the sphere, we were given
D₀ = 4.000 cm
α = 1.1 x 10⁻⁵/degrees celsius
we have D = 4 + (4x(1.1 x 10⁻⁵)T = 4 + (4.4x10⁻⁵)T EQN 1
Similarly for the Aluminium ring we have
we were given
d₀ = 3.994 cm
α = 2.4 x 10⁻⁵/degrees celsius
we have d = 3.994 + (3.994x(2.4 x 10⁻⁵)T = 3.994 + (9.58x10⁻⁵)T EQN 2
Since @ the temperature T at which the sphere fall through the ring, d=D
Eqn 1 = Eqn 2
4 + (4.4x10⁻⁵)T =3.994 + (9.58x10⁻⁵)T, collect like terms
0.006=5.18x10⁻⁵T
T=115.7K