Since the common difference is 6, we can assume that the sequence is arithmetic, with rule
T(n)=6n+5 where T(1)=11
T(9)=6(9)+5=59
Answer:
Hello,
Step-by-step explanation:
Best fit: quadratic y=5.3x²-9.3+6.1
with an total error of 0.4
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>C</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope </em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em> </em><em>.</em><em>.</em>
The two points are (x, f(x)) and (x+h, f(x+h)). To find the slope, the definition is the change in y over the change of x. Does this sound familiar!! Applying this definition we get the following formula: and the points x<span>1 = 2 and x2 = 4. Then in our general answer, we will replace x with x1 and h = x2 - x1. Replacing these values in the formula yields 2(2) + (4 - 2) = 4 + 2 = 6. Thus, the slope of the secant line connecting the two points of the function is 6. </span><span>Now using the same function as above, find the average rate of change between x1 = -1 and x2<span> = -3. The answer is 2(-1) + ( -3 + 1) = -2 + -2 = -4. This means that the secant line is going downhill or decreasing as you look at it from le</span></span>
0, 1, 2
all are less than 24