Answer:
HCl(aq) + KOH(aq) ⇒ KCl(aq) + H₂O(l)
Explanation:
Hydrochloric acid is an acid because it releases H⁺ in an aqueous solution.
Potassium hydroxide is a base because it releases OH⁻ in an aqueous solution.
When an acid reacts with a base they form a salt and water. This is a neutralization reaction. The neutralization reaction between hydrochloric acid and potassium hydroxide is:
HCl(aq) + KOH(aq) ⇒ KCl(aq) + H₂O(l)
Answer:
b. E = 2,28V
Explanation:
The maximum work is the same than ΔG. As ΔG could be written as:
ΔG = nFE <em>(1)</em>
Where n is moles of electrons transferred, F is faraday constant (96485 J/Vmol) and E is the voltage of the cell.
For the reaction:
CH₃OH(l) + ³/₂O₂(g) → CO₂(g) + 2H₂O(l)
The oxidation state of C in CH₃OH is -2 but in CO₂ is +4, that means transferred electrons are +4 - -2 = <em>6e⁻</em>
Replacing in (1):
1320x10³ J = 6mol e⁻×96485J/Vmol×E
<em>E = 2,28V</em>
<em></em>
I hope it helps!
Answer:
D. It is limited to situations that involve aqueous solutions or specific compounds.
Explanation:
An Arrhenius acid is a substance that increases the concentration of H3O or H+ when dissolved in water. An Arrhenius base is a substance that increases the concentration of OH- when dissolved in water. These definitions tell us that D is indeed limited to situations that involve aqueous solutions or specific compounds, as aqueous means something that's dissolved in water.
A is wrong because the Bronsted-Lowry interpretation has a wider range of applications. Bronsted-Lowry acids and bases don't even need to be aqueous, so it is not limited to just aqueous solutions. They include any substance that can donate or accept a H+.
B is wrong because A is wrong. A and B basically say the same thing, that the Arrhenius interpretation has a wider range of applications than the Bronsted-Lowry interpretation.
C is wrong because the definition of an Arrhenius base is any substance that increases the concentration of OH-, or hydroxide ions. C completely counters this statement.
Here's photo for proof incase you're doubtful of my answer & explanation. Please click the heart if it helped.
Alpha partical is a He nucleus. When decaying alpha particle mass is reduced by 4 and atomic number is reduced by 2.
The actual element which has 102 protons is No (Nobelium).
Since it has 167 neutrons, the mass = protons + neutrons = 102 + 167 = 269
after an alpha decay, the new element formed has 100 protons which is Fm ( Fermium)
the alpha decaying equation is,
₁₀₂²⁶⁹No → ₁₀₀²⁶⁵Fm + ₂⁴α + heat
the total mass and the atomic number( numbe rof protons) must be equal in both sides.