Answer:
Yes
Explanation:
the gravity of an object depends on its mass. that's why the sun has its gravitational pull.
The temperature of the gas sample is 813 K.
<u>Explanation:</u>
We have to use the ideal gas equation to find the temperature of the gas sample.
The ideal gas equation is PV = nRT
Pressure, P = 429 mm Hg = 0.56 atm
Volume, V = 560 mL = 0.56 L
R = gas constant = 0.08205 L atm mol⁻¹K⁻¹
Mass = 0.211 g
Molar mass of carbon di oxide = 44.01 g / mol
Moles, n = 
= 0.0047 mol
Now, we have to plugin the above values in the above equation, we will get the temperature as,

T = 
= 813 K
So the temperature of the gas sample is 813 K.
Answer & Explanation:
Kindly find the attached presentation.
To get the value of ΔG we need to get first the value of ΔG°:
when ΔG° = - R*T*㏑K
when R is constant in KJ = 0.00831 KJ
T is the temperature in Kelvin = 25+273 = 298 K
and K is the equilibrium constant = 4.5 x 10^-4
so by substitution:
∴ ΔG° = - 0.00831 * 298 K * ㏑4.5 x 10^-4
= -19 KJ
then, we can now get the value of ΔG when:
ΔG = ΔG° - RT*㏑[HNO2]/[H+][NO2]
when ΔG° = -19 KJ
and R is constant in KJ = 0.00831
and T is the temperature in Kelvin = 298 K
and [HNO2] = 0.21 m & [H+] = 5.9 x 10^-2 & [NO2-] = 6.3 x 10^-4 m
so, by substitution:
ΔG = -19 KJ - 0.00831 * 298K* ㏑(0.21/5.9x10^-2*6.3 x10^-4 )
= -40